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Abstract

We present a practical vacuum pressure sensor based on the Schottky junction using graphene anchored on a vertically
aligned zinc oxide nanorod (ZnO-NR). The constructed heterosystem of the Schottky junction showed characteristic rec-
tifying behavior with a Schottky barrier height of 0.64 eV. The current-voltage (I-V) features of the Schottky junction
were measured under various pressures between 1.0 10° and 1.0 X 10~ mbar. The maximum current of 38.17 mA for the
Schottky junction was measured at —4 V under 1.0x 10~ mbar. The high current responses are larger than those of the pre-
viously reported vacuum pressure sensors based on ZnO nanobelt film, ZnO nanowires, and vertically aligned ZnO nanorod
devices. The pressure-sensitive current increases with the vacuum pressure and reaches maximum sensitivity (78.76%) at
1.0x 107> mbar. The sensitivity and repeatability of the Schottky junction were studied by the current—time (/-7) behavior
under variation of vacuum pressure. The sensing mechanism is debated from the surface charge transfer doping effect by
oxygen chemisorption. The results suggest that this simple graphene/ZnO-NR Schottky junction device may have potential
in the fabrication of vacuum pressure sensor with high sensitivity.
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1 Introduction

Recently, there has been a lot of focus on the fabrication
of nanostructured electronic devices with well-defined size
and shape for sensor applications [1] such as molecular,
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temperature, various biosensors, and vacuum pressure sen-
sors [2]. Vacuum sensors are important devices and are gen-
erally used in thin film deposition, manufacturing control
unit, and research. The vacuum pressure sensing process
using thermocouples with a hotplate and self-heated Pirani
gauge has various effective applications in the industry
[3, 4]. Due to the large size, the sensing systems are not
suitable for integrated circuit. Interestingly, field-emission
(FE), microoptoelectromechanical system (MOEMS), and
microelectromechanical system (MEMS) devices |35, 6] were
reducing the size of electronic devices. However, the man-
ufacturing complication, operating voltage, and high cost
of electronics need to be considered before claims. These
problems make it challenging to commercialize FE devices,
MOEMS, and MEMS 1n vacuum sensors [7].

Generally, low-dimensional ZnO nanomaterials are of
larger length with a high surface area so that they could
provide high current responses in electronic and sensor
devices, such as photoconductive switch, oxygen sensors,
chemical detector, and self-powered ethanol sensor. There
have also been reports of vacuum pressure sensors based
on ZnO nanostructured materials such as nanobelt film,
nanowires, and vertically aligned nanorods [1, 8, 9]. How-
ever, these vacuum pressure sensors are challenging to use
in practical applications due to their incredibly weak current
response. We naturally explore whether the response current
of a vacuum pressure sensor may be improved using a gra-
phene/ZnO-NR Schottky junction, which has more carrier
channels in a small region.

Recently, two-dimensional (2D) graphene has been
employed 1n various potential applications due to 1ts extraor-
dinary material properties including remarkably high charge
carrier mobility and very high surface area [ 10]. These prop-
erties make widespread interest 1n their potential applica-
tions for gas molecule detection based on conductivity and
surface work function. A conventional resistive-type sensor
operates based on variation in the electrical resistance of
graphene upon gas molecule exposure [11]. However, con-
ventional sensors do not exhibit high sensitivity because the
electrical resistance of graphene changes according to the
number of transferred charge carriers, which are limited by
the density of exchange charge and the characteristics of
graphene and gaseous molecules [12].

Heterojunction devices made of graphene and semicon-
ductors have been recently employed 1n electronic device
[13]. Such heterojunctions are not only fundamentally attrac-
tive from the perspective of electronic devices but also very
promising for sensing applications due to the atomically
thin nature of graphene. However, zero-band gap graphene
acts as a metal in the heterojunction with semiconductor
(e.g., ZnO nanorod) to form the Schottky junction [14]. The
sensing signal is magnified by the nonlinear characteristics
of the device, which has attracted researchers worldwide to
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study Schottky junction made of graphene and semiconduc-
tors [15]. The earhest studies on metal and semiconductor
interfaces were conducted by Schottky and Mott [16, 17].
An energy barrier is created at the interface when a metal
and semiconductor come 1nto contact. The Schottky barrier”
height, which also regulates the flow of current over the
interface, is determined by the work functions of two differ-
ent materials. To examine the physical and electrical charac-
teristics of metal/semiconductor materials and their surfaces,
Schottky junctions have been employed [18, 19]. However,
its presence can enhance or decrease the performance of
devices, especially in gas molecule exposure on graphene
under atmospheric air and vacuum pressure. Therefore, we
consider whether using a high surface area of graphene in
contact with ZnO-NR will increase the response of vacuum
pressure Sensors.

Herein, we fabricated a Schottky junction of graphene/
Zn0 nanorod (G/Zn0O-NR) and investigated its electrical
and vacuum pressure sensing characteristics. The resist-
ance—pressure (R—P) and sensitivity—pressure (5—P) curves
were established by measuring the current-voltage (I-V)
properties at various vacuum pressures. The sensitive mech-
anism is discussed from the surface charge transfer effect
by oxygen chemisorption to understand the large response
current of G/ZnO-NR Schottky junction. Also, the stability,
repeatability, and reproducibility of G/ZnO-NR Schottky
junction sensor were investigated. This research may pro-
vide a useful guideline for the potential application of the
Schottky junction for designing high-performance vacuum
pressure Sensors.

2 Experimental methods

2.1 Synthesis of CVD graphene film and ZnO-NR

Graphene films were grown on 25-um-thick Cu foils (used
as the catalytic substrates) using the chemical vapor deposi-
tion (CVD) method at 1000 °C with a mixture of C,H, (10
SCCM) and H, (200 SCCM) as the reaction source [14].
Following deposition, polymethylmethacrylate (PMMA)
solution was spun coated over the graphene films, and the
bottom Cu substrate was removed by etching with 0.5 M
ammonium persulfate solution. Then, PMMA-supported
graphene was applied to the glass substrate and dried at
100 °C for 10 min and the PMMA was removed using
acetone. The characteristic structures of the as-synthesized
graphene layer were confirmed by Raman spectroscopy with
an excitation wavelength of 633 nm.

The ZnO-NR has been formed with 1:1 ratio of amine/
Zn by aqueous solution-based growth technique at low tem-
perature [20]. An approximately 100 nm thickness of ZnO
seed layer was coated on 1% 1 cm? selected area of indium
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tin oxide (ITO) substrates by RF sputtering. Separately dis-
solved the hexamine (HMTA) (C¢H;,N,) and zinc nitrate
hexahydrate Zn (NO,),-6H,0 were in double-distilled water
and constantly stirred for 15 min. To create a single-phase
growth solution, the Zn (NO,), solution and HMTA solu-
tion were combined dropwise and continuously stirred for
20 min. The ZnO seed layer-covered ITO substrate was
dipped in the growth substance and kept at 95 °C for 5 h.
After the growth procedure was complete, the nanorod-
deposited substrates were washed with distilled water and
ethanol and then they were baked for a further 30 min at
e § e

2.2 Characterization

The surface morphologies of the as-synthesized ZnO-NR
were characterized by field-emission scanning electron
microscopy (FE-SEM, Carl Zeiss Sigma). Phase identifica-
tion and crystalline orientation were investigated by XRD
(Bruker Advanced D8) with Cu-Ka (4=0.15406 nm) radia-
tion in the range of 20-80° at room temperature. Photolumi-
nescence (PL) measurements were obtained using a 32-nm
He-Cd laser operating at room temperature.

2.3 Vacuum pressure Sensor fabrication

Graphene/ZnO-NR Schottky junction vacuum pressure
sensors were fabricated using as-grown ZnO-NR followed
by the transfer of CVD graphene. To make the surfaces
of the as-grown ZnO-NR arrays more hydrophilic, they
were exposed to oxygen plasma for 30 s at a pressure of
100 torr. The four sides of ZnO-NR were then sealed using
sellotape to act as insulation. To mount the 1x 1 cm? size
of PMMA-coated graphene film on top of ZnO-NR arrays,
the film was floated in deionized water and progressively
elevated. Finally, the contact was developed by silver paste
on the graphene sheet after removing PMMA using ace-
tone. The vacuum pressure sensing properties of G/ZnO-NR
Schottky junction were analyzed by a simple, home-built
vacuum chamber with a rotary pump setup (HINDHIVAC
Model: 12 MSPT). The sensor has been placed in a vacuum
chamber and coupled to a Keithley 2400 source measure-
ment unit by an ECOPIA Hall probe. The current—voltage
features of vacuum sensor were determined under stand-
ard atmospheric and various vacuum pressures (1.0 X 10"
50107 2.0¢10~, 1.05107",:5.0%:107%. 1,010,
and 1.0 x 10~ mbar). To investigate the reproducibility
of the vacuum pressure sensor, three separate G/ZnO-NR
Schottky junction devices are fabricated with the same
conditions and measured current response under different
vacuum pressures. The three fabricated G/ZnO-NR Schottky
junction devices were named sensor 1, sensor 2, and sensor

3, respectively. The G/ZnO-NR Schottky junction device
fabrication process was clearly demonstrated in Scheme 1.

3 Results and discussions
3.1 Structural and morphological studies

The XRD patterns of ZnO-NR made with 1:1 amine/Zn
ratios are shown in Fig. 1a. The resulting XRD peaks are
in good agreement with the hexagonal wurtzite structure of
Zn0 identified in JCPDS card 36-1451 [21], and no peaks
clearly attributable to contaminants and impurities were
found. Compared to other peaks related to the (100) and
(004) planes, the (002) plane reflection’s strength is rising.
This suggests that the c-axis perpendicular to the substrate
is the preferred direction for one-dimensional nanostructural
growth [22].

The quality of the prepared samples has been investigated
using micro-Raman measurements. The room temperature
Raman spectra of graphene and graphene atop ZnO-NRs are
shown in Fig. 1b. The Raman spectra of graphene clearly
show that it has three distinctive bands that are located at
1363 cm™ (D), 1578 cm™" (G), and 2722 cm™" (2D), respec-
tively. Typically, defects are attributed to the D band, and
disorders in the sp® carbon rings emerge. The dispersion of
first-order phonons (E2g), often known as G-bands, results
in the other G-bands. The other band results from the disper-
sion of first-order phonons (E2g), often known as G-bands
[23, 24]. The two phonon double resonant scatter processes
are accountable for the 2D band, which indicates the stacked
layer of graphene. However, because of graphene’s inherent
flaws, the double resonant scatter with elastic and 1nelas-
tic components that occurs 1n the D band 15 possible. As a
result, a D band’s wave number position is about half of a
2D band and 1s dependent on the excitation wavelength [25,
26]. Along with the D, G, and 2D bands of graphene, the
Zn0O mode’s characteristics may be seen after the assembly
of graphene on ZnO-NRs. The optical phonon E2 (high)
mode of the ZnO-NR wurtzite hexagonal phase is clearly
seen in the band at 437 cm™!, as illustrated in Fig. 1b [27]. In
reality, the presence of defects in layered graphene is almost
unavoidable during the CVD growth process. This defec-
tive graphene strongly interacts with gas molecules and thus
enhances the sensitivity of the Schottky junction device for
monitoring vacuum pressure.

The FE-SEM image of the ZnO-NR, CVD graphene, and
G/ZnO-NR is shown in Fig. 2. The FE-SEM image of well-
defined hexagonal-shaped ZnO-NR with diameters of ~ 100
to 200 nm is shown in Fig. 2a. The excellent quality of the
Zn0O-NRs 1s 1llustrated by great density and homogeneity.
Figure 2b displays a FE-SEM image of large-scale graphene
that has been transferred to glass. The graphene appears to
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Scheme 1 Fabrication process of G/ZnO-NR Schottky junction device

be continuous in scale, and there are no color contrasts vis-
ible using an optical microscope, indicating uniform growth
across the sample. However, a few wrinkles in graphene are
ascribed to the process of wet chemical transferring the gra-
phene layer. Also, we examined the hybrid G/ZnO-NR using
FE-SEM. The resultant features, as depicted in Fig. 2c, d,
demonstrate the greater homogeneity of graphene over the
transferred region without any fractures or openings. How-
ever, the random wrinkle features that have been noticed are
unavoidably created during the process of transfer and do not
appear to have any effect on the sensor device.

The effectiveness of charge carrier entrapment and the
lifetime of photogenerated electron-hole pairs from semi-
conductors under light irradiation are commonly investi-
gated using the PL emission spectrum [28]. Figure 3 shows

@ Springer

PMMA removed by acetone

the PL spectra of G/ZnO-NR and bare ZnO-NR, which were
both obtained at room temperature using a He-Cd laser at
an excitation wavelength of 325 nm. The UV emission peak
in the PL spectra of G/ZnO-NR is identical to those of bare
ZnO-NR. The broad and intense emission peak was observed
at 383 nm, and it was caused by the direct recombination
process of electron and hole pairs. After anchoring the gra-
phene on ZnO-NR, the emission intensity of the G/ZnO-NR
was dramatically reduced. It is evident from the outstanding
interaction between graphene and ZnO-NR [29, 30].

3.2 Vacuum pressure sensor studies

Figure 4 shows the I-V plots of the vacuum sensor at
normal atmospheric pressure and different low pressures.
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Fig. 2 FE-SEM image of a ZnO-NR, b CVD graphene, and ¢, d low and high magnification of G/ZnO-NR

The inset of Fig. 4a shows the G/ZnO-NR Schottky junc-
tion structure. A typical rectifying contact between gra-
phene and ZnO-NR is depicted in Fig. 4a, with a Schottky
barrier height (SBH) of 0.64 eV. The thermionic emission

model can be used to explain the rectifying behavior
of the G/ZnO-NR contact [31], which is expressed as

follows:
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where [ 15 the saturation current, g 1s the electron charge, n
is the ideality factor, k is the Boltzmann constant, and 7T is
the absolute temperature. As shown in Fig. 4b, the current
response drastically increases with the increase in chamber
vacuum pressure at —4 V. The current value is significantly
high (38.17 mA) under vacuum pressures of 1x 10~ mbar.
The current response of the G/ZnO-NR Schottky junction
sensor at 1 X 10~ mbar is about four orders higher than that
of 1% 10° mbar. A new kind of stable and sensitive vacuum
pressure sensor based on G/ZnO-NR Schottky junction can
be developed as a result of the high sensitivity, which shows
that the current changes dramatically with the pressure.

The Schottky barrier has to be highly sensitive to oxygen.
Consequently, the G/ZnO-NR Schottky device’s I-V curves
were measured at atmospheric air and vacuum pressure to
further confirm the presence of the Schottky barrier in our
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devices as shown in Fig. 4c. The G/ZnO-NR Schottky junc-
tion showed significantly improved conductivity in vacuum,
which 1s due to the Schottky barriers’ extreme sensitivity
to O, gas [32]. Once the device was back in contact with
air, the conductivity totally comes back to its original level
due to the Schottky barrier’s quick recovery. However, both
the ZnO-NR resistance and the Schottky barrier have an
influence on the conductivity. Additionally, the noticed lit-
tle conductivity is due to the ZnO-NR sluggish recovery.
Furthermore, the resistance R can be obtained by Ohmic law
from Fig. 4b, and the logarithmical relationship between the
resistance and pressure (R—P curve) is summarized as shown
in Fig. 4d. The curve shows that the electrical resistance of
the G/ZnO-NR Schottky device decreased monotonically
with pressure. This observation shows that the sensor is
sensitive from atmospheric pressure to vacuum.

In general, the chemisorption mechanism plays an impor-
tant role in regulating the conductance of sensitive nanoscale
devices. The adsorption and desorption of gas molecules
such as NH;, CO,, H,0, and O, can change the transport
characteristics of graphene [33]. The oxygen molecule is
a well-known accepting electron to induce doping effects,
which could influence the Fermi level (Eg) of graphene [34,
35]. However, the position of the Fermi level varied by the
density of electron in the current transport of graphene [24].
As a result, oxygen chemisorption and desorption control the
charge transfer effect in the G/ZnO-NR Schottky device sen-
sor, which may be utilized to interpret changes in the Ey of
graphene under vacuum pressure. The sensitive mechanism
of G/ZnO-NR Schottky junction can be explained with the
help of schematic energy band diagram as shown in Fig. 5.
In atmospheric air, a lot of oxygen molecules are adsorbed
on the exposed surface of the graphene layer, and they cap-
ture free electrons to become negatively charged oxygen

Atmospheric air
E0

« i
Er-c Er-zn0 -
SBH = 0.64 eV
\ Ev
B oo )
e @ 0,

ions. The negatively charged oxygen ions will reduce the
number of free electrons that cross interface, which leads
to a decrease in the conductivity because the E is shifted
toward the valence band of ZnO-NR. In a vacuum, the air 1s
extracted by a rotary pump to lower the amount of oxygen
molecules in the chamber and the oxygen molecules at the
graphene surface will be desorbed or diffused into the air.
In this process, the captured electrons are released from the
negatively charged oxygen ions to enhance the conducting
carrier’s density. It may lead to a shift in the E toward the
conduction band of ZnO-NR, which would increase conduc-
tivity [18]. With the increase in the vacuum pressure in the
chamber, more and more oxygen molecules are desorbed
from the surface of graphene to reduce the barrier height of
the Schottky junction; therefore, the enhanced conductiv-
ity will increase the current as in Fig. 4b and decrease the
resistance as 1n Fig. 4d.

The sensitivity S = (R, — Ry,) /R, X 100 can be used to
calculate the sensor’s sensitivity, where R, and Ry, repre-
sent the resistance of the constructed Schottky device under
a standard atmosphere and vacuum pressure, respectively.
From Fig. 4b, the sensitivities § are correspondingly cal-
culated as 64.5, 67.8, 70.4, 73.0, 76.5, and 78.7% under
5.0x107",2.0x107",1.0x107",5.0x 107, 1.0x 1077, and
1.0x 1073 mbar, and then, the S—P relationship of vacuum
pressure sensor based on G/ZnO-NR Schottky junction can
be given in Fig. 6a. This new kind of vacuum pressure sensor
could be developed with improved high sensitivity (78.76%)
at 1.0 10" mbar, which indicates that the current response
changes dramatically from atmospheric pressure to vacuum
pressure.

To explore the repeatability and response time of G/
ZnO-NR Schottky junction sensor the I-T was measured
for five cycles at —4 V under vacuum pressure variation

Vacuum pressure

Eo0

ErG

S(ad) ©

Fig. 5 A Schematic diagram of the vacuum pressure-sensitive mechanism of G/ZnO-NR Schottky junction under atmospheric air and vacuum

pressurce
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as shown in Fig. 6b, c. There are approximately the same
current fluctuations, which indicate that the signal is repeat-
able. The response currents are steady at 8.89 mA under
atmospheric pressure for the sensors based on G/ZnO-NR
Schottky junction after turning off the rotary pump within
the range of 0—61 s for step 1. The response currents signifi-
cantly increase (24.5 mA) with increasing vacuum pressure
from the atmospheric pressure to 2.0 X 10™! mbar within the
range of 61-229 s for step 2 after opening the valve and turn-
ing on the rotary pump. Therefore, the response time of the
G/ZnO-NR Schottky junction sensors is~(0.14 mA/s. After
turning off the rotary pump and allowing atmospheric air to
chamber, the response currents recover to the steady value
of 8.87 mA with a small fluctuation through 56 s for Step
3. The sensor currents change continuously with pressure
variation, which indicates a good response and recovery time
with good repeatability.

Apart from sensing performance, stability is also an
important parameter to evaluate the performance of elec-
trocatalysts. As shown in Fig. 6d, the current density (/-V)
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maintains almost identical to its initial curve after 50 cycles,
demonstrating the superior stability of G/ZnO-NR Schottky
junction sensor and possibilities for practical applications.
Furthermore, the long-term stability was observed by I-T
measurement at — (0.2 V for the period of 120 min (inset
Fig. 6d). The I-T curve of G/ZnO-NR Schottky junction
shows good stability, and there was no significant drop in the
overall current trend. The slight fluctuation of curve may be
due to the variation in the maintained pressure level.

To prove the reproducibility of vacuum pressure sensor,
three separate G/ZnO-NR Schottky junction devices are fab-
ricated and their current responses were measured 1n [-V
characteristics under various vacuum pressures. The current
response drastically increases with the increase in vacuum
pressure as shown in Fig. 7. The current value is found simi-
larly for all three sensors without significant changes. The
obtained maximum current values of three sensors under
1.0x 102 mbar are about 38.17, 36.70, and 39.71 mA for
sensor 1, sensor 2, and sensor 3, respectively. Figure 7d dem-
onstrates the histogram plot for comparison of three sensors’
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current response at —4 V under different vacuum pressures.
There 1s a small current variation between three sensors
about 1-2.5 mA due to the Schottky barrier height and Eg
level, defects, and layer properties of CVD-grown graphene.

Vacuum pressure sensors play a significant role in modern
industrial development. However, there are still many chal-
lenges to the applicability of vacuum pressure sensors due
to their integration techniques, complex fabrication, mass
production, and high cost. In recent years, ZnO and gra-
phene-based vacuum pressure sensors have been interested,
which proposed a good sensing response. For instance, ZnO
nanostructured-based vacuum pressure sensor fabricated
through the lithographic process has evidence of a signifi-
cant current response [7, 36]. However, fabrication costs
and device integrity greatly hinder vacuum pressure sensors’
commercial and practical applications. The low-temperature
solution-grown ZnO-NR has excellent potential for fabricat-
ing devices because of its scalability and shortened fabri-
cation time. In addition, easy fabrication of the Schottky
junction on ZnO-NR through transferring CVD graphene
film promoted the device integrity with a simple strategy

and low-cost fabrication technique. Also, this simple fabri-
cation process makes mass production and scalability of G/
ZnO-NR Schottky junction-based device assembly. The inte-
grated G/ZnO-NR Schottky junction-based vacuum pressure
sensor with distinguished features such as high sensitivity,
nanoscale feature, low cost, and simple fabrication shows
great feasibility, and it may be a tremendous potential can-
didate for vacuum technology in modern industries such as
switches, pneumatic conveying, packaging, and degassing.

4 Conclusion

We present a simple G/ZnO-NR Schottky junction vacuum
pressure sensor. The as-fabricated device demonstrated
a characteristic rectifying performance, with a SBH of
(.64 eV. The sensor response significantly increases with the
increase in chamber vacuum pressure at —4 V. The Schottky
junction sensor sensitivity increased to 78.76% with good
response and recovery as the chamber vacuum pressure
was varied. The oxygen chemisorption on the surface of the
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graphene with the charge transfer doping effect was used to
explain the mechanism of pressure sensitivity. The G/ZnO-
NR-based Schottky junction suggested in this paper shows
promise for a novel class of vacuum pressure sensor.
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