Department of Physics

Sri GVG Visalakshi College for Women, (Autonomous)

Affiliated to Bharathiar University

Re- Accredited at A+ Grade by NAAC (Fourth Cycle)

An ISO 9001:2015 Certified Institution

Udumalpet - 642128, Tamilnadu

Employability/ Entrepreneurship/ Skill development Courses

Name of the Course	Course Code	Activities/Content with a direct bearing on Employability/ Entrepreneurship/ Skill development
	UG Physics	
Core I Properties of Matter and Sound	121P01	Employability: Laboratories
Core III Physical and Laser	221P03	Employability: Laboratories,
Optics		Communication sectors
Core Practical I	221PP1	Skill development: Laboratory Practical
		sessions & Demonstrations
SEC I - Professional English	320PS1	Skill development: Group discussion
Part IV: SEC II –	420PS2	Skill development: Demonstration sessions
Instrumentation Physics –I		& Practical sessions
Core IV: Classical Mechanics and Mathematical Physics	418P05	Skill development: Problem solving sessions
Core Practical II	417PP2	Skill development: Practical sessions,
		Instrument setup, constructing electrical circuits
Core Practical III	517PP3	Skill development: Practical sessions & constructing electronic circuits.
Elective I - Scilab (T&P)	517PE1	Skill development: Programming skills & Debugging skills

Elective II Project and viva voce	517PE3	Skill development: Experimental / Theoretical Project work, Report writing & viva voce - Technical & Communicative skills
SEC III- Electronic Instrumentation	517PS3	Skill development: Demonstration of experiments & Practical sessions
Core VIII Electricity and Magnetism	617P08	Skill development: Problem solving skills
Core X Digital Electronics and Microprocessors	617P10	Employability: Designing digital circuits and Topics on Microprocessors
Core Practical IV	617PP4	Skill development: Instrument setup, constructing circuits -Experimental skill
Elective Course -III- Computational Physics using C Programming	617PE4	Skill development: Programming skills for the given problem
Elective Practical Computational Physics Practical using C Programming	617PE6	Employability: Programs for solving Physics problems & debugging
SEC IV Institutional training	617PS4	Skill development: Internship on Calibration of instruments
Allied Physics Practical	221AMP / 221ACP	Skill development: Laboratory Practical sessions

Curriculum Design Sri G.V.G Visalakshi College for Women (Autonomous) Affiliated to Bharathiar University

B.Sc. Physics

Scheme of Examination – CBCS & OBE Pattern (For the students admitted from the academic year 2021-2022 onwards)

Sem	Course Code	Course Title	Ins.		Exam			
	Code		Hrs/	Dur.	CIA	ESE	Total	Credits
			Week	Hrs	Marks	Marks	Marks	
	121TA1/ 121MY1/ 121HD1/ 121FR1	Part I- Language I	6	3	50	50	100	3
	121EN1	Part II - English I	6	3	50	50	100	3
	121P01	Part III - Core I -Properties of Matter and Sound	7	3	50	50	100	6
I		Core Practical I	3	-	-	-	-	-
	121AP1/	Allied I Chemistry I	4	3	30	45	75	4
	121AM2							
		Allied Chemistry Practical	2	-	-	-	-	-
	121VEG	Part IV-Value Education- Human Values and Gender Equity	2	2	50	-	50	1
	221TA2/ 221MY2/ 221HD2/ 221FR2	Part I - Language II	6	3	50	50	100	3
	221EN2	Part II - English II	6	3	50	50	100	3
II	221P02	Part III – Core II- Heat and Thermodynamics	4	3	50	50	100	4
	221P03	Core III – Physical and Laser Optics	3	3	50	50	100	3
	221PP1	Core Practical I	3	3	50	50	100	3
	221AP2/	Allied II Chemistry II	4	3	30	45	75	4
	221AM4							

221APP/	Allied Chemistry Practical	2	3	25	25	50	2
221AZP/							
221AMC							
221EVS	Part IV-Environmental Studies	2	2	50	-	50	1

Curriculum Design

Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

B.Sc. Physics

Scheme of Examination – CBCS & OBE Pattern (For the students admitted during the academic year 2020-2021 only)

	Course Code	Course Title	Ins. Hrs/ Week		Exan	nination		Credits
Sem				Dur. Hrs	CIA Marks	ESE Marks	Total Marks	Credits
I	119TA1/ 119MY1 / 119HD1 / 119FR1	Part I- Language I	6	3	25	75	100	4
	119EN1	Part II – English I	6	3	25	75	100	4
	117P01	Part III- Core I- Mechanics, Properties of Matter and Sound	7	3	25	75	100	5
		Core Practical I	3	-	-	-	-	-
	120AP1	Allied I Chemistry I	4	3	25	50	75	3
		Allied Chemistry Practical	2	-	-	-	-	-
	119VEC	Part IV- Value Education	2	2	50	-	50	2
II	219TA2/ 219MY2 / 219HD2 / 219FR2	Part I- Language II	6	3	25	75	100	4
	219EN2	Part II - English II	6	3	25	75	100	4
	217P02	Part III – Core II- Heat and Thermodynamics	4	3	25	75	100	4
	217P03	Core III - Optics	3	3	25	75	100	3

	217PP1	Core Practical I	3	3	40	60	100	4
	220AP2	Allied II Chemistry II	4	3	25	50	75	3
	220APP	Allied Chemistry Practical	2	3	20	30	50	2
	219EVS	Part IV- Environmental Studies	2	2	50	-	50	2
III	320TA3 / 319MY3 / 319HD3 / 319FR3	Part I – Language III	6	3	25	75	100	4
	317EN3	Part II -English III	6	3	25	75	100	4
	317P04	Part III -Core IV- Atomic and Solid State Physics	4	3	25	75	100	4
	015170	Core Practical II	3	-	-	-	-	-
	317AP3	Allied III – Mathematics I	6	3	25	75	100	4
	317NSE	Part IV – Non Major Elective – (Science in Everyday Life)	2	2	50	-	50	2
	320PS1	Part IV- Skill Enhancement Course I Professional English for Physics	3	3	75	-	75	3
IV	420TA4 / 419MY4 / 419HD4 / 419FR4	Part I – Language IV	6	3	25	75	100	4
	417EN4	Part II- English IV	6	3	25	75	100	4
	418P05	Part III- Core V Classical Mechanics and Mathematical Physics	4	3	25	75	100	4
	417PP2	Core Practical II	3	3	40	60	100	4
	417AP4	Allied IV Mathematics II	6	3	25	75	100	4
	417NG A	Part IV- General Awareness and Information security	2	2	50	-	50	2
	420PS2	Part IV- Skill Enhancement Course- II – Instrumentation Physics I	3	3	<mark>75</mark>	-	<mark>75</mark>	3
1		Advanced Learners		<u> </u>	<u> </u>	<u> </u>	100	

Curriculum Design

Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

Department of Physics

B.Sc. Physics

Scheme of Examination – CBCS Pattern (For the students admitted during the academic year 2017-2018 onwards)

Sem	Course	Course Title	Ins.					
	Code		Hrs /	Dur.	CIA	ESE	Total	Credits
			Wee k	Hrs	Marks	Marks	Marks	
	117TA1/ 117MY1/ 117HD1/ 117FR1	Part I- Language I	6	3	25	75	100	4
	117EN1	Part II – English I	6	3	25	75	100	4
I	117P01	Part III- Core I- Mechanics, Properties of Matter and Sound	7	3	25	75	100	5
		Core Practical I	3	-	-	-	-	-
	117AP1	Allied I Chemistry I	4	3	25	50	75	3
		Allied Chemistry Practical	2	-	-	-	-	-
	117EVS	Part IV-Environmental Studies	2	2	50	-	50	2
	217TA2/ 217MY2/ 217HD2/ 217FR2	Part I- Language II	6	3	25	75	100	4
	217EN2	Part II - English II	6	3	25	75	100	4
II	217P02	Part III – Core II- Heat and Thermodynamics	4	3	25	75	100	4
	217P03	Core III - Optics	3	3	25	75	100	3
	217PP1	Core Practical I	3	3	40	60	100	3
	217AP2	Allied II Chemistry II	4	3	25	50	75	3

	217APP	Allied Chemistry Practical	2	3	20	30	50	2
	217VEC	Part IV-Value Education	2	2	50	-	50	2
	317TA3/	Part I – Language III	6	3	25	75	100	4
	317MY3/							
	317HD3/							
	317FR3							
	317EN3	Part II -English III	6	3	25	75	100	4
III	317P04	Part III -Core IV- Atomic and Solid State Physics	4	3	25	75	100	4
		Core Practical II	3	-	-	-	-	-
	317AP3	Allied III – Mathematics I	6	3	25	75	100	4
	317NSE	Part IV – Non Major Elective – (Science in Everyday Life)	2	2	50	-	50	2
	317PS1	Part IV- Skill Enhancement Course I – Mechanical and Medical Instrumentation	3	3	75	-	75	3
	417TA4/	Part I – Language IV	6	3	25	75	100	4
	417 HA4/ 417 MY4/ 417 HD4/ 417 FR4	Tait I – Language IV	O	3	23	73	100	4
	417EN4	Part II- English IV	6	3	25	75	100	4
IV	418P05	Part III- Core V Classical Mechanics and Mathematical Physics	4	3	25	<mark>75</mark>	100	4
	417PP2	Core Practical II	3	3	40	60	100	3
	417AP4	Allied IV Mathematics II	6	3	25	75	100	4
	417NGA	Part IV- General Awareness and Information security	2	1	50	-	50	2
	417PS2	Part IV- Skill Enhancement Course- II – Electrical Instrumentation	3	3	75	-	75	3

	417ALP	Advanced Learners	-	3	-	100	100	4*
		Course – I Space Physics						
	517P06	Part III- Core VI- Electronic Devices and Circuits	6	3	25	75	100	5
	517P07	Core VII- Nanosciences	5	3	25	75	100	5
	517PP3	Core Practical III	6	3	40	60	100	3
X 7	517PE1	Elective I – Scilab(T &P)	5	3	40	60	100	4
V	517PE2	/ Atmospheric Science	5	3	25	75	100	
	517PE3	Elective II- Project and Viva – voce	5	3	50	50	100	4
	517PS3	Part IV- Skill Enhancement Course- III Electronic instrumentation	3	3	75	-	75	3
	617P08	Part III-Core VIII- Electricity and Magnetism	5	3	25	75	100	5
	617P09	Core IX -Quantum Mechanics and Relativity	5	3	25	75	100	5
	617P10	Core X -Digital Electronics and Microprocessors	5	3	25	75	100	5
	617PP4	Core Practical IV	6	3	40	60	100	3
VI	617PE4 617PE5	Elective III – Computational Physics using C Programming/ Computational Physics using	4	3	25	<mark>75</mark>	100	4
		MATLAB Programming						
	617PE6	Elective Practical- Computational Physics Practical using C Programming	2	3	20	30	50	1
	617PE7	Computational Physics Practical using MATLAB Programming						
	617PS4	Part IV- Skill Enhancement Course- IV – Institutional Training	3	-	75	-	75	3

617EX1/	Part V- Extension activity	-	-	50	-	50	2
617EX2/	NCC/NSS/YRC/RRC/ Games						
617EX3/							
617EX4/							
617EX5							
617ALP	Advanced Learners Course – II Energy Physics	-	3	-	100	100	4*

Total: 3500 140

Curriculum Design Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

Department of Physics B.Sc. Physics

Scheme of Examination – CBCS Pattern (For the students admitted during the academic year 2017-2018 onwards)

Sem	Course	Course Title	Ins.					
	Code		Hrs/	Dur.	CIA	ESE	Total	Credits
			Week	Hrs	Marks	Marks	Marks	
	117TA1/	Part I- Language I	6	3	25	75	100	4
	117MY1/							
	117HD1/							
	117FR1							
	117EN1	Part II – English I	6	3	25	75	100	4
	117P01	Part III- Core I-	7	3	25	75	100	5
		Mechanics, Properties of						
Ι		Matter and Sound						
		Core Practical I	3	-	-	-	-	-
	117AP1	Allied I Chemistry I	4	3	25	50	75	3
		Allied Chemistry	2	-	-	-	-	-
		Practical						
	117EVS	Part IV-Environmental Studies	2	2	50	-	50	2

	217TA2/ 217MY2/ 217HD2/ 217FR2	Part I- Language II	6	3	25	75	100	4
	217EN2	Part II - English II	6	3	25	75	100	4
II	217P02	Part III – Core II- Heat and Thermodynamics	4	3	25	75	100	4
	217P03	Core III - Optics	3	3	25	75	100	3
	217PP1	Core Practical I	3	3	40	60	100	3
	217AP2	Allied II Chemistry II	4	3	25	50	75	3
	217APP	Allied Chemistry Practical	2	3	20	30	50	2
	217VEC	Part IV-Value Education	2	2	50	-	50	2
	317TA3/ 317MY3/ 317HD3/ 317FR3	Part I – Language III	6	3	25	75	100	4
	317EN3	Part II -English III	6	3	25	75	100	4
	217704	Part III -Core IV- Atomic	4	3	25	75	100	4
III	317P04	and Solid State Physics		3	23	73	100	4
		Core Practical II	3	-	-	-	-	-
	317AP3	Allied III – Mathematics I	6	3	25	75	100	4
	317NSE	Part IV – Non Major Elective – (Science in Everyday Life)	2	2	50	-	50	2
	317PS1	Part IV- Skill Enhancement Course I – Mechanical and Medical Instrumentation	3	3	75	-	75	3
IV	417TA4/ 417MY4/ 417HD4/ 417FR4	Part I – Language IV	6	3	25	75	100	4

	417EN4	Part II- English IV	6	3	25	75	100	4
	417P05	Part III- Core V Mathematical Physics	4	3	25	75	100	4
	417PP2	Core Practical II	3	3	40	60	100	3
	417AP4	Allied IV Mathematics II	6	3	25	75	100	4
	417NGA	Part IV- General Awareness and Information security	2	1	50	-	50	2
	417PS2	Part IV- Skill Enhancement Course- II – Electrical Instrumentation	3	3	75	-	75	3
	417ALP	Advanced Learners Course – I Space Physics	-	3	-	100	100	4*
	517P06	Part III- Core VI- Electronic Devices and Circuits	6	3	25	75	100	5
	517P07	Core VII- Nanosciences	5	3	25	75	100	5
	517PP3	Core Practical III	<mark>6</mark>	3	40	60	100	3
\mathbf{v}	517PE1	Elective I – Scilab(T &P)	<mark>5</mark>	3	40	60	100	4
	517PE2	/ Atmospheric Science	5	3	25	75	100	
	517PE3	Elective II- Project and Viva -voce	5	3	50	50	100	4
	517PS3	Part IV- Skill Enhancement Course- III Electronic instrumentation	3	3	75	-	<mark>75</mark>	3
	617P08	Part III-Core VIII- Electricity and Magnetism	5	3	25	75	100	<mark>5</mark>
	617P09	Core IX -Quantum Mechanics and Relativity	5	3	25	75	100	5
VI	617P10	Core X -Digital Electronics and Microprocessors	5	3	25	<mark>75</mark>	100	5
	617PP4	Core Practical IV	6	3	40	60	100	3

617PE4	Elective III – Programming in C/	4	3	25	75	100	4
	Programming in						
617PE5	MATLAB						
617PE6	Elective Practical- Programming in C/	2	3	20	30	50	1
617PE7	Programming in MATLAB						
617PS4	Part IV- Skill Enhancement Course- IV - Institutional Training	3	-	<mark>75</mark>	-	<mark>75</mark>	3
617EX1/ 617EX2/ 617EX3/ 617EX4/ 617EX5	Part V- Extension activity NCC/NSS/YRC/RRC/ Games	-	-	50	-	50	2
617ALP	Advanced Learners Course – II Energy Physics	-	3	-	100	100	4*

B.Sc. Physics

Semester I

(For the students admitted from the academic year 2021-2022 onwards)

Course: Part III - Core I Properties of Matter and Sound	Course Code: 121P01
Semester: I	No. of Credits: 6
No. of hours: 105	C:T - 85:20
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To impart knowledge in the determination of Gravitational constant, g and elastic constants.
- > To provide knowledge about Surface tension & viscosity of matter and its determination.
- > To provide an understanding of Ultrasonics, the origin of the sound, Practical applications and 1.2.2a- ED EMP SEC UG Physics

Course Outcomes: On completion of the Course, the student will be able to

CO	Statement	BTL
CO 1	Describe the methods of determination of 'G' & 'g' and solve related problems	A
CO 2	Discuss the elastic properties of matter and solve the problems of elastic constants of materials	A
ÇO 3	Describe the methods of determination of viscosity of liquids and solve the problems involved in it	A
CO4	Explain surface tension of fluids, Determination, correlate the property with different natural phenomena and solve the problems	A
CO 5	Discuss the concept of waves, origin of sound, velocities of sound and it's variation with various physical parameters	U
CO 6	Explain the vibration of sound and acoustics of buildings.	U

U-Understand A-Apply

Syllabus:

Unit I: Gravitation: 17 hrs

Kepler's laws of motion – Derivation of law of gravitation – Newton's universal law of gravitation – Determination of 'G' by Boy's method – Merits of Boy's method – Acceleration due to gravity – Compound pendulum – Bar pendulum – Points of suspension and oscillation are interchangeable – Minimum time period – Value of g at the poles and at the equator- Variation of g with altitude- Variation of g with depth – Variations of g with rotation of the earth - **Worked out problems**.

Unit II Elasticity: 17 hrs

Definitions – Yield point, Elastic limit – Elastic fatigue – Three types of elasticity: Young's Modulus, Bulk Modulus, Modulus of Rigidity – Work done per unit volume in a strain - Poisson's ratio – Poisson's ratio of rubber- Twisting couple of a cylinder – Torsion pendulum – Static Torsion- Bending of beams – Bending moment – Beam supported at its end and loaded in the Middle – I section Girders – Cantilever -Determination of Elastic constants by Searle's method - **Worked out problems**

Unit 17 hrs

Viscosity

Stream line motion and Turbulent flow — Poiseullie's formula — Correction to Poiseullie's formula — Poiseullie's experiment (Variable pressure head) - Ostwald's viscometer — Terminal velocity and Stoke's formula — Stoke's method — Variation of viscosity with temperature and pressure — Friction and lubrication — Searle's viscometer **Worked out problems**

Surface Tension

Surface tension- Work done in blowing a bubble – Angle of contact – Spreading of one liquid over another – Pressure difference across a liquid surface – Excess pressure inside a curved liquid surface- Determination of surface tension of a liquid by Jaeger's method – Variation of surface tension with temperature – Quincke's method - Worked out problems

Unit IV 17 hrs

Waves

Waves-nature, production and propagation - Stationary waves - Characteristic of a stationary wave - Analytical treatment of stationary waves - Nature of stationary waves- Pressure and density changes at displacement nodes and antinodes - Wave velocity and particle velocity - Group velocity and waves in dispersive media.

Velocity of Sound

Origin of Sound – Velocity of longitudinal waves in gases – Newton's formula for velocity of sound – Effect of temperature and pressure on velocity of sound in gases – Effect of density, humidity and wind – Velocity of sound in water – Velocity of sound in air – Velocity of sound in Isotropic Solids.

Unit V Acoustics and Ultrasonics

17 hrs

Free vibrations – Undamped vibrations - Damped vibrations – Forced vibrations – Origin of Sound – Practical applications: Gramophone – Microphone & Loud speaker – Tape recorder – Reverberation – Sabine's Reverberation formula – Factors Affecting the Acoustics of Buildings – Sound Distribution in an Auditorium – Requisites for good Acoustics.

Ultrasonics - Production of Ultrasonic waves - Piezoelectric Oscillator - Determination of velocity of Ultrasonic waves- Application of Ultrasonic waves.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition

I&II	Properties of Matter	Brijlal, N.Subramanyam	Eurasia Publishing house, New Delhi, XIII, Edition 2001
III	Properties of Matter	R.Murugesan	S.Chand Publications, Revised Edition, 2012
IV &V	A Text book of Sound	N.Subramanyam, Brijlal	Vikas Publishing House Pvt Ltd. Reprint, 2006

B.Sc. Physics

Semester II

(For the students admitted from the academic year 2021 – 2022 onwards)

Course: Part III - Core III Physical and Laser Optics	Course Code: 221P03
Semester: II	No. of Credits: 3
No. of hours: 45	C:T:37 : 8
CIA Max. Marks:50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To provide an understanding of aberrations in lenses and its rectification
- > To impart knowledge in the wave optical phenomena like interference, diffraction & Polarization.
- > To develop the problem solving skills in interference, diffraction and Polarization topics.
- > To enable the students to understand the basic principles of laser action and their types.

CO	Statement	BTL
CO 1	Explain the types of aberration in lenses, the methods of rectification and solve the problems using it	A
CO 2	Describe the concept of interference, design and working of interferometer and its applications for the determination of wavelength	A

ÇO 3	Explain the concept and theory of diffraction and polarization of light	A
	and solve the related problems	
CO 4	Discuss the principle, Characteristics and population inversion of	U
	Lasers.	
CO 5	Distinguish different types of Lasers and its operation and	U
	applications.	

U-Understand A-Apply

Syllabus:

Unit I Aberration 7 hrs

Spherical aberration in a lens – Reducing spherical aberration – Chromatic aberration – Chromatic aberration in a lens – Achromatic lenses – Condition for achromatism of two lenses placed in contact – Condition for achromatism of two thin lenses separated by a finite distance – **Worked out problems**.

Unit II Interference 8 hrs

Interference – Conditions for interference – Techniques of obtaining interference – Interference in Thin films: Variable thickness (wedge- shaped) film – Michelson Interferometer – Applications – Measurement of wavelength – Determination of the difference in the wavelength of two waves

- Worked out problems

Unit III: Diffraction and Polarization

8 hrs

Diffraction: Fraunhofer diffraction of a plane transmission grating – Theory – Secondary maxima and minima - Dispersive power of a grating – Prism and grating spectra – Resolving power of a grating - **Worked out problems**

Polarization: Polarized light- Types of polarized light- Production and detection of elliptically and circularly polarized light - Optical activity - Specific rotation - Laurent's half shade polarimeter - **Worked out problems**

Unit IV: Laser Optics

7 hrs

Introduction – Characteristics of Laser Beam – Interaction of Light with matter – Quantum transition in Absorption and Emission of light: Absorption – Spontaneous emission – Stimulated emission – The Active Medium: -Light Amplification in an inverted Active Medium – Population Inversion - Method of creating population inversion - Einstein Coefficients and their relations.

Unit V: Types of Lasers

7hrs

Solid state Lasers: Ruby lasers –Nd: YAG lasers – Gas Lasers: He –Ne Lasers – Molecular Laser: CO2 Laser – Liquid Laser: Organic dye Laser –Semiconductor Laser –Applications of Lasers: Industry –Medicine – Optical Communication.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-III	A Text book of Optics	N. Subrahmaniyam, Brijlal & M.N. Avadhanulu	S. Chand and Company Ltd, 25 th revised edition 2012
IV&V	Laser Physics and Applications	L.Tarasov	MIR Publishers
	Lasers Theory, Principles and Applications	Dr.Manjeet Singh	Vayu Education of India Ist Edition 2011

B.Sc. Physics

Semester I & II

(For the students admitted from the academic year 2021 –2022 onwards)

Course: Part III – Core Practical I	Course Code: 221PP1
Semester: I & II	No. of Credits: 3
No. of hours : 45 hours /Semester	P:R 35:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(P:Practical, R: Record)

Course Objectives:

- > To provide opportunities for developing the laboratory skills by applying theoretical knowledge.
- To develop a broad array of basic skills and tools for performing Physics experiments and data analysis.
- > To understand the concept of direct observation in Physics principles and to distinguish between inferences based on theory and on the outcomes of experiments.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	BTL
CO 1	Determine the acceleration due to gravity at a place using compound pendulum	An
CO 2	Determine the elastic constants of the materials and analyse the results	An
CO 3	Determine the optical parameters using optical sources and lasers and interpret the results.	An
CO 4	Determine of viscosity and surface tension of liquids by appropriate methods and interpret the results	An
CO 5	Verify the laws of vibrations of the stretched string and calculate frequencies of the tuning fork and ac frequency	An
CO 6	Determine the thermal properties of solids and liquids	An

An-Analyse

Syllabus:

Part III - Core Practical I - List of Practicals

(A minimum of 15 experiments)

- 1. Measurements of Breadth , Thickness and diameter of solid material using vernier caliper, screw gauge
- 2. Acceleration due to gravity Compound pendulum
- 3. Acceleration due to gravity Kater's Pendulum
- 4. Young's modulus Uniform bending Pin & Microscope.
- 5. Young's modulus Non Uniform bending Pin & Microscope.
- 6. Young's modulus Non-Uniform bending Single optic lever and Telescope
- 7. Rigidity modulus of the material of the rod Static Torsion
- 8. Y, η , σ Searle's double bar pendulum.
- 9. Wavelength of LASER source Grating
- 10. Refractive Index of liquid Hollow prism and Laser Source
- 11. Reconstruction of a Hologram Demonstration
- 12. Refractive index of the material of the Prism Spectrometer

- 13. Surface tension and interfacial tension drop weight method.
- 14. Surface tension capillary rise method
- 15. Co-efficient of viscosity of highly viscous liquids (castor oil) Stoke's method
- 16. Co-efficient of viscosity of water and comparison of radii of capillary tubes Poiseullie's flow.
- 17. Verification of laws of stretched string & determination of unknown frequency of the tuning fork Sonometer
- 18. Frequency of an electrically maintained tuning fork Melde's string
- 19. Thermal conductivity of a bad conductor (Cardboard) –Lee's disc method.
- 20. Specific heat capacity of a liquid Joule's Calorimeter
- 21. Melting point of wax using thermistor Ohm's law

B.Sc. Physics Semester III

(For the students admitted during the academic year 2020 – 2021 only)

Course: Part IV -SEC I Professional English	Course Code: 320PS1
for Physics	
Semester: III	No. of Credits: 3
No. of hours: 45	C: 45
CIA Max. Marks: 75	ESE Max. Marks: -

C: Contact hours

Course Objectives:

- To develop the language skills of students by offering adequate practice in
- professional contexts.
- To enhance the lexical, grammatical and socio-linguistic and communicative
- competence
- To focus on developing students' knowledge of domain specific registers and the
- required language skills.
- To develop strategic competence that will help in efficient communication
- To sharpen students' critical thinking skills and make students culturally aware of the
- target situation.

CO	Statement	BTL
CO 1	Recognise their own ability to improve their own competence in using the language	
CO 2	Use language for speaking with confidence in an intelligible and acceptable manner	
CO 3	Read independently unfamiliar texts with comprehension	
CO 4	Write simple sentences without committing error of spelling or grammar	U

U –**Understand**

Unit I : Communication 9hrs

Listening: Listening to Instructions

Speaking: Pair work

Reading: Comprehension passages – Differentiate between facts and opinion

Writing: Developing a story with pictures.

Oral : Register specific - Incorporated into the LSRW tasks

Unit II : Description 9hrs

Listening: Listening to process description.

Speaking: Role play (formal context)

Reading: Skimming/Scanning-

Reading passages on products, equipment and gadgets.

Writing: Process Description –definition- Free Writing.

Oral : Register specific -Incorporated into the LSRW tasks.

Unit III : Negotiation Strategies 9hrs

Listening: Listening to interviews of specialists / Inventors in felds (Subject specific)

Speaking: Brainstorming. (Mind mapping). Small group discussions (Subject-Specific)

9hrs

Reading: Longer Reading text.

Writing: Essay Writing (250 words)

Unit IV : Presentation Skills

Listening: Listening to lectures.

Speaking: Short talks.

Reading: Reading Comprehension passages

Writing: Writing Recommendations, Interpreting Visuals inputs

Oral: Register specific - Incorporated into the LSRW tasks

Unit V: Critical Thinking Skills

9hrs

Listening: Listening comprehension- Listening for information.

Speaking: Making presentations (with PPT- practice).

Reading: Comprehension passages –Note making.

(Comprehension: Motivational article on Professional Competence,

Professional Ethics and Life Skills)

Writing: Problem and Solution essay- Creative writing -Summary writing

Oral: Register specific - Incorporated into the LSRW tasks

B.Sc. Physics

Semester IV

(For the students admitted during the academic year 2020 – 2021only)

Course: Part IV Skill Enhancement Course II –	Course Code: 420PS2
Instrumentation Physics (Theory & Practical)	
Semester: IV	No. of Credits: 3
No. of hours: 45	C:P: 45
CIA Max. Marks:75	ESE Max. Marks: -

(C:Contact hours, P-Practicals)

Course Objectives:

- To provide a strong foundation in the working concepts of instruments used for parametric measurements.
- To facilitate the learners to understand about the measurement of various levels of temperature using thermometers.
- To familiarize the handling and maintaining of simple mechanical and Optical Instruments

and their purposes by performing practical activity.

СО	Statement	BTL
CO	Discuss the characteristics of instruments and measurement systems	A
1		

CO	Measure the mechanical parameters and interpret the instrumental and	An
2	measurement errors	
ÇO	Describe the types of thermometers of different ranges and study the variation of	A
3	resistance with temperature	
CO	Perform the measurements using Microscope, telescope and Spectrometer	A
4		

A-Apply, An-Analyse

Syllabus:

Unit I: Characteristics of Instruments hrs

9

True value – Static error – Static correction – Scale range and Scale pan – Reproducibility and Drift – Repeatability – noise – Accuracy and Precision

- 1. Identify different range of thermometers and find out the scale span.
- 2. Measurement of breadth by using Vernier caliper

Unit II: Measurements system

9 hrs

Types of errors – Gross errors – Systematic errors – Instrumental errors – Observational errors – Random errors- Limiting errors

- 1. Observe the errors in given meters.
- 2. Find out the error in the Screw gauge, do the error correction and measure the thickness of the given object

Unit III Measurement of Temperature

9 hrs

Electrical resistance thermometer: Platinum resistance thermometer – Salient features of resistance wire thermometers – Thermocouple thermometer – Thermocouple construction – Measurement of thermocouple output – Advantages and Disadvantages

- 1.Measurement of emf using thermocouple
- 2. Variation of Resistance with temperature- Thermistor

Unit IV Microscopes and Telescopes

9 hrs

Travelling Microscope – Parts of travelling Microscope- Least count- Telescope- Magnification of telescope-

- 1. Identify the different parts, assemble the parts of Telescope and focus the object at a given distance.
- 2. Name the parts, assemble, adjustment of moving microscope and focus the smaller radius objects.

Unit V Optical Instruments

9 hrs

Spectrometer- Parts of Spectrometer- least count- laser diffraction and Interference- Hazard Classification For Lasers

- 1. Dismantle the parts of Spectrometer, assemble and adjust the parts for the measurement.
- 2. Diffraction of a CD using laser source

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I —	Electrical and Electronic	A.K.Sawhney	Dhantpat Rai & Sons
V	Measurements and		Publications,
	instrumentation		4 th Edition 1991
I –	Industrial Instrumentation	K.Krishnaswamy and S.	New age international
V		Vijaya chitra	Publishers
			First edition – Reprint 2008.

B.Sc. Physics

Semester IV

(For the students admitted during the academic year 2018 – 2019 and onwards)

Course: Part III - Core V Classical Mechanics and Mathematical Physics	Course Code: 418P05
Semester: IV	No. of Credits 4
No. of hours: 60	C:T - 52:8

CIA Max. Marks: 25	ESE Max. Marks:75	

(C:Contact hours, T:Tutorial)

Course Objectives: The Course aims

- > To provide an understanding of basic vector function and vector identities.
- ➤ To disseminate the vector theorems and facilitate the learners to apply Gauss divergence theorem for Physics problems.
- > To impart knowledge in the understanding of fundamentals of classical mechanics, Lagrangian and Hamiltonian.
- ➤ To familiarize numerical method of solving algebraic equations, differential equations and integral equations and to develop the skills in finding the approximate solutions for the problems.

Course Outcomes: On completion of the Course, the student will be able to

CO	Statement	Bloom's
		Taxonomy
		level
CO 1	Explain Gauss divergence theorem, Stokes theorem and Green's	\mathbf{U}
	theorem and its applications to solve Physics problems	
CO 2	Write gradient, divergence, curl and Laplacian in different co-	A
	ordinate systems.	
ÇO 3	Describe Lagrangian and Hamiltonian and D'Alembert's Principle	U
CO 4	Solve the problems for different physical systems under Classical	\mathbf{A}
	Mechanics.	
CO 5	Obtain the solution for the problems involving differentiation,	U
	integration and simultaneous algebraic equations numerically.	
CO 6	Discuss the need for finding approximate solution by using numerical	A
	methods and able to assess the reliability of the solution	

R-Remember U – Understand A-Apply

Syllabus:

Unit I: Vectors- I 10hrs

Line, Surface and Volume integrals – Divergence and Curl of a vector function – Simple Problems – Important vector identities – Gauss divergence theorem and Proof – Problems using Gauss divergence theorem – Equation of Continuity.

Unit II Vectors- II 10 hrs

Stoke's theorem and Proof – Problems using Stoke's theorem – Green's theorem and its Proof using Gauss divergence theorem – Green's theorem in a plane – Classification of vector fields.

Orthogonal curvilinear coordinates – Gradient, Divergence, Laplacian and Curl in terms of orthogonal curvilinear coordinates – Spherical polar coordinates and differential operators.

Unit III Classical Mechanics - Lagrangian

10hrs

Constraints and degrees of freedom – Holonomic and non-holonomic constraints Generalised co-ordinates – Generalised notations – Generalised displacement – Generalised velocity – Generalised momentum – Generalised force - D'Alembert's principle – Lagrange's equations from D'Alembert's principle for Conservative system – Application of Lagrange's equation of motion: Linear Harmonic Oscillator – Simple Pendulum.

Unit IV Classical Mechanics - Hamiltonian

11hrs

Hamilton's variational principle – Deduction of Lagrange's equations of motion from Hamilton's principle for conservative system - Phase space and the motion of the system – Hamiltonian–Hamilton's Canonical equations of motion –Physical Significance of H – Deduction of Canonical Equation from a variational principle –Applications of Hamilton's equations of motion: Simple Pendulum.

Unit V Numerical Methods

11hrs

Solution of algebraic equations – Bisection method – Newton-Raphson method – Solution of linear algebraic equations – Gauss elimination method.

Numerical integration – Quadrature formula for equidistant co-ordinates –Trapezoidal rule – Simpson's rule – Numerical solution of ordinary differential equations – Taylor's series method – Fourth order Runge-Kutta method.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I & II	Mathematical physics	Satya Prakash	Sultan & sons, Reprint 2014
III & IV	Classical Mechanics	Dr. S.L. Gupta, Dr.V. Kumar & Dr. H.V. Sharma	PragatiPrakashan Publishing, Meerut Third revised edition 2010
V	Numerical methods	A.Singaravelu	Meenakshi Publications New revised edition 2014

B.Sc. Physics

Semester III & IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III – Core Practical II	Course Code: 417PP2
Semester: III & IV	No. of Credits: 3
No. of hours : 45 hours /Semester	P:R 30:15
CIA Max. Marks: 40	ESE Max. Marks: 60

(P:Practical, R: Record)

Course Objectives: The Course aims

- To enhance a better Understand of theory through practicals.
- Tofamiliarize the equipments, develop observational skills and to foster critical thinking.
- > To train the students in measuring, recording, analyzing and interpreting the results of the experiments involving electricity and electronics.
- Todevelop troubleshooting skills, independent thinking and team work

CO	Statement	Bloom's Taxonomy level
CO 1	Calibrate the given electrical meters using appropriate circuit components, record the data, draw the calibration graph and interpret the results	A

CO 2	Draw the electrical circuit, select the appropriate meters, perform the experiments, record and interpret the results	A
CO 3	Use magnetometer to determine the moment of the magnet and magnetic flux density	A
CO 4	Use optical sources and lasers for the determination of optical parameters with appropriate procedure, tabulate the findings and analyze the results	A

Syllabus:

Part III – Core Practical II - List of Practicals

(A minimum of 15 experiments)

- 1. Calibration of high range Ammeter Potentiometer
- 2. Calibration of high range voltmeter Potentiometer.
- 3. Calibration of low range Ammeter Potentiometer
- 4. Temperature co-efficient of resistance of a coil Carey-Foster's bridge.
- 5. Comparison of e.m.fs of two cells B.G.
- 6. Figure of merit of B.G.
- 7. Moment of the magnet due to the field along the axis of the coil Magnetometer.
- 8. Magnetic flux density due to the field along the axis of the coil Magnetometer.
- 9. Wavelength of colors of Mercury spectrum Grating Normal Incidence Method Spectrometer
- 10. i-d curve Spectrometer
- 11. Determination of Hartmann's constants Spectrometer
- 12. Wavelength of LASER source Grating
- 13. Refractive Index of liquid Hollow prism and Laser Source
- 14. Determination of AC frequency Sonometer.
- 15. Q factor of a series resonant circuit.
- 16. Q factor of a parallel resonant circuit.
- 17. Low pass and high pass filters.
- 18. Study of characteristics of a Zener diode.
- 19. Construction of low voltage power supply using diodes.

- 20. Tracing of Lissajou's figures CRO.
- 21. Reconstruction of a Hologram Demonstration

B.Sc. Physics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course Code: 517PP3
No. of Credits: 3
P:R : 60:18
ESE Max. Marks: 60

(P:Practical, R: Record)

Course Objectives: The Course aims

- > To gain practical knowledge by applying the experimental methods to correlate with Physics theory.
- To provide an experience in handling the equipments for the synthesis of nanomaterials.
- Todevelop the ability to record and analyse the experimental data.
- > Todevelop intellectual communication skills and discuss the basic principles of scientific concepts in a group
- Todevelop troubleshooting skills, independent thinking and team work

CO	Statement	Bloom's Taxonomy level
CO 1	Use optical sources and lasers to study the optical parameters, record the data and interpret the results.	A

CO 2	Draw the electrical circuit, select the appropriate meters, perform the experiments, record and interpret the results	A
CO 3	Determine the physical constants such as Plank's constant, compressibility, dielectric constant, for solids, bandgap energy of thermistor with the use of appropriate devices, record the data and analyze the results	A
ÇO 4	Construct OP-AMP as Adder, Subtractor, Inverter, Non inverter and peaking amplifier, with appropriate electrical components and devices, record the data and interpret the results.	A

A-Apply

Syllabus:

Part III - Core Practical III - List of Practicals

(A minimum of 15 experiments)

- 1. Cauchy's constants Spectrometer.
- 2. Absolute measurement of capacity B.G.
- 3. High resistance by leakage B.G.
- 4. Band gap energy of a Thermistor.
- 5. Determination of Planck's constant
- 6. Determination of Dielectric constant for solids
- 7. Study of absorption of laser light on various filters Demonstration.
- 8. Characteristics of LED Laser Source
- 9. Study of variation of magnetic field with current
- 10. Determination of magnetic susceptibility of paramagnetic solution
- 11. Determination of compressibility of liquids-Acousto optic effect
- 12. Differentiating and Integrating Circuits
- 13. FET Characteristics
- 14. Voltage Doubler.
- 15. Clipping Clamping circuits
- 16. Single stage RC coupled amplifier.

- 17. Construction of Bridge rectifier
- 18. Hartley oscillator using BJT
- 19. Colpitt's oscillator using BJT.
- 20. Inverting and Non-Inverting amplifier using OPAMP 741
- 21. Adder and subtractor using OPAMP 741
- 22. Peaking Amplifier using OPAMP 741
- 23. Synthesis of Nano particles.
- 24. Coating of thin film.

B.Sc Physics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III – Elective I Scilab (T&P)	Course Code: 517PE1
Semester: V	No. of Credits: 4
No. of hours: 75	C:T:P 26:10:39
CIA Max. Marks: 40	ESE Max. Marks: 60

(C: Contact hours, T: Tutorial, P: Practical)

Course Objectives: The Course aims

- \succ To familarise Scilab environment and the syntax, data types, operators, Graphics and Blocks of SCILAB.
- > Toprovide a practical exposure to solve problems in Mechanics, Electronics and other fields of Physics.
- To provide foundation in the use of SCILAB for real time applications

СО	Statement	Bloom's Taxonomy level
CO 1	Explain about the main features of SCILAB environment	U

CO 2	Explain Scilab data types, graphics and its Programming structures	U
ÇO 3	Apply working knowledge of Scilab to solve Physics problems and to the electrical circuits in Physics	A
CO 4	Solve and simulate the electrical circuits in Scicos environment	A
CO 5	Realize the importance of the course and evaluate, analyse and present the results	A
CO 6	Identify the errors and predict the output of the program	A

<u>U</u> – <u>U</u>nderstand A - Apply

Syllabus:

Unit I 5 hrs

Getting started with SCILAB- Command line – Scilab data types: Constants – Constant Matrices – String Matrices – Polynomials-Boolean operations – Objects - Matrix operations

Unit II 5 hrs

Programming with Scilab: Programming structures - General operators - Arithmetic operators - Boolean operators - Conditional structure - Loop structures- Functions

Unit III 5 hrs

Scilab Environment : General display commands – Output commands –Input commands – Commands for files

Unit IV 5 hrs

Graphics under Scilab: Graphics window – Plotting parameters – 2D plotting – 3D plotting

Unit V 6 hrs

Scicos (Scilab Connected Object Simulator): Running Scicos – Basic blocks -Editing a model – Block construction – Diagram simulation – Changing block parameters – Activation generation

Programs (Any 7) 39 hrs

- 1. Matrix operations
- 2. Ohm's law to find R
- 3. Hooke's law to find spring constant
- 4. Resistances combination
- 5. Radio active decay
- 6. Half wave rectifier
- 7. Logic gates
- 8. Projectile problem
- 9. Series Resonant circuit
- 10. Black body radiation and the Planck's function
- 11. Drawing 2D, 3D plots
- 12. Programs using blocks

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Programming in Scilab 4.1	Vinu V Das	New age International (P) Limited, Publishers, 2009, First Edition

B.Sc. Physics

Semester V

(For the students admitted from the academic year 2017 – 2018 and onwards)

Course: Part III - Elective II Project and Viva-voce	Course Code: 517PE3
Semester: V	No. of Credits: 4
No. of hours: 60	
CIA Max. Marks: 50	ESE Max. Marks:50

Course Objectives: The Course aims

- > To motivate the students to do project at micro level in Physics.
- > To familiarize the students with the recent areas of research in Physics
- > To explore the knowledge about the experimental methods
- > To enhance the presentation skills in the report working
- > To raise the confidence level of students in pursing higher studies and research in future

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Develop the skill of identifying an area for Project work at micro level.	U
CO 2	Choose appropriate equipments for their project	U
CO 3	Acquire skill of handling equipments used for Project in an effective way	A
CO 4	Analyse and interpret the results of their work	A
CO 5	Write a report and present it with suitable figures, graphs, circuit diagrams, photos etc.	A
CO 6	Work confidently and behave with high ethical standards, team spirit and integrity	A

U-**Understand A-Apply**

B.Sc. Physics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part IV Skill Enhancement Course III – Electronic Instrumentation	Course Code: 517PS3
Semester: V	No. of Credits: 3
No. of hours: 45	C:T:P - 27:6:12

CIA Max. Marks: 75	ESE Max. Marks: -

(C:Contact hours, T:Tutorial, P:Practical)

Course Objectives: The Course aims

- To impart fundamental knowledge in the of design, working and applications of CRO
- To expose knowledge in the fundamentals of analog and digital acquisition systems.
- To provide practical exposure in the use of electronic equipments

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Explain CRO for its design, operation and application	U
CO 2	Sketch A/D acquisition systems and discuss its applications	U
ÇO 3	Describe data converters and computer controlled instrumentation systems.	U
CO 4	Handle the equipments CRO, AFO and test for its performance and to test ICs, diodes and resistors for its functioning	A

U –**Understand A-Apply**

Syllabus:

Unit I: Oscilloscopes 7hrs

Oscilloscope block diagram – CRT – Electrostatic – Deflection – Screens – Graticules – CRT circuits – Vertical deflection system - Horizontal deflection system – Oscilloscope techniques – Determination of frequency – Digital storage oscilloscope – Block diagram explanation only.

Unit II Data converters 6hrs

Digital to analog converters – Basic inputs and outputs - Weighted resistor network technique – Analog to Digital converters – Basic inputs and outputs - Successive approximation technique.

Unit III Analog and Digital data acquisition systems.

7hrs

A/D data acquisition systems – Block diagram – Interfacing transducers to electronic control and measuring systems – Instrumentation amplifier – Voltage to current converter (current loop) – Digital to Analog multiplexing – Analog to Digital Multiplexing.

Unit IV Computer controlled – Test systems

7hrs

Testing a Radio receiver – Instruments used in computer controlled instrumentation – Frequency counter for operation with IEEE 488 bus – Signal generator interfaced with IEEE 488 bus – IEEE 488 electrical interface.

Unit V Practicals: 12 hrs

- 1 Maintaining of AFO
- 2. Maintaining of CRO
- 3. Designing input output devices for digital electronics experiments
- 4. Construction of power supply (5V)
- 5. Handling and maintaining of electronic equipments
- 6. Testing of IC's , Diodes and Resistors

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I – IV	A Course in Electrical and Electronic Measurements and instrumentation	A.K.Sawhney	Dhantpat Rai & Sons Publications, Reprint 2008

B.Sc. Physics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core VIII Electricity and Magnetism	Course Code: 617P08
Semester: VI	No. of Credits: 5
No. of hours: 75	C:T - 65:10

CIA Max. Marks: -25 ESE Max. Marks: 75

(C: Contact hours, T: Tutorial)

Course Objectives: The Course aims

- To impart knowledge about the basic concepts of electric and magnetic field.
- To expose the types of capacitors and energy stored in capacitor
- > To provide knowledge about the magnetic field due to the current carrying conductor, electromagnetic induction.
- To facilitate the applications of electrostatics, Electromagnetics and circuit analysis.
- To develop problem solving skills in electricity.
- To introduce the concept of circuit elements and network theorems

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Recollect the basic concepts in electricity, magnetism, circuit parameters	R
CO 2	Explain Coulombs law and Gauss law of electrostatics and its applications	U
ÇO 3	Discuss the types of capacitor and energy stored in the capacitor	U
CO 4	Explain the concept of magnetic field due to steady current	U
CO 5	Demonstrate the principle of electromagnetic induction, measurement of inductance and its applications	U
CO 6	Sketch the DC and AC circuits, explain its operation and solve problem related to it.	A
CO 7	Use appropriate concepts and equations to solve problems in electricity and magnetism.	A
CO 8	Develop an Understand of network theorems and apply the concepts of nodes, branches and network theorems to solve circuit problems.	A

R-Remember U – Understand A-Apply

Syllabus:

Unit I Electrostatics 12hrs

Gauss's law & proof – Gauss's law in differential form – Gauss's law and Coulomb's law – Laplace and Poisson's equation – Applications: Electric field due to an uniformly charged sphere – field due to two concentric spherical conductors – Field of a line charge – Field of a charged conductor – Force on the surface of a charged conductor – Demonstration of mechanical force – **Worked out examples.**

Unit II Capacitors and Magnetic field

12hrs

Parallel plate capacitor – Cylindrical capacitor – Spherical capacitor – Guard Ring Capacitor – Energy stored in a capacitor – Force of attraction between capacitor plates – Dielectric constant - Dielectric strength .

Magnetic field due to steady current :Bio-Savart Law - Ampere's circuital law and proof – Applications of Ampere's law –**B** near a long wire – B for a Solenoid – B for a Toroid – Character of **B** lines and the divergence of **B**– Ampere's law in curl form – **Worked out examples.**

Unit III Electromagnetic Induction

12 hrs

Inductor and inductance – Self inductance – Physical significance of self inductance – Self inductance of a Solenoid – Two parallel wires – Toroidal coil of circular cross section – Energy stored in magnetic field – Measurement of self inductance by Rayleigh's method – Mutual inductance – Mutual inductance of concentric solenoids – Relation between mutual inductance and self inductance – Inductances in series and in parallel Measurement of mutual inductance – **Worked out examples.**

Unit IV Electromagnetic oscillations

12hrs

Simple R-L circuit: Growth anddecay of current (Helmolholtz Equation) – RC Circuit Charge and discharge of a condenser – Determination of high resistance by leakage method – Series LCR circuit –Charge and discharge–**Worked out examples.**

A.C circuit: A Parallel (or Anti) resonant circuit – Parallel resonant circuit when inductance L have some resistance – Condition for unity power factor – Current magnification – Selectivity of a parallel resonance circuit – Comparative study of a series resonant and parallel resonant circuit – Power in AC circuit – Choke coil – **Worked out examples.**

Unit V Circuit Analysis

12 hrs

Classification of circuits – Laws and Theorems for Circuit Analysis: Superposition theorem – Thevenin's theorem – Norton's theorem – Maximum power transfer theorem – **Worked out examples.**

AC Bridges: AC Bridges for the measurement of inductance- Maxwell's bridges – Owen's bridge – AC bridge for the measurement of capacitor, Desauty's AC bridge – Wein's bridge.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Electricity and Magnetism	Dr. K.K. Tewari	S.Chand & Co. Ltd.,New Delhi
			Revised edition 2011.

B.Sc. Physics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core X Digital Electronics and	Course Code: 617P10
Microprocessors	
Semester: VI	No. of Credits: 5
No. of hours: 75	C:T - 60: 15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C: Contact hours, T:Tutorial)

Course Objectives: The Course aims

- To acquire the basic knowledge of digital logic levels and its applications.
- To instill the foundation level knowledge in the digital circuits for arithmetic, logic and sequential operations such as counting, storing etc.
- > To familiarize the technology involved in the manufacturing of the linear and digital ICs and their applications
- > To impart knowledge in the design of semiconductor and magnetic memory systems and memory decoding systems.
- > To introduce the basic concepts of microprocessor and to familiarize the assembly language programming skills

Course Outcomes: On completion of the Course the student will be able to

CO	CO Statement	
		Taxonomy
		level
CO 1	Develop a digital logic and apply it to solve real life problems.	R
CO 2	Design, implement and analyse sequential logic circuits.	U
ÇO 3	Explain step by step industrial method of IC Fabrication	R
CO 4	Discuss the fundamentals and areas of applications for the integrated circuits.	U
CO 5	distinguish Semiconductor Memories such as RAM, ROM andmagnetic memories	U
CO 6	Apply the fundamentals of assembly level Programming of Microprocessors	A
CO 7	Demonstrate the ability to design practical circuits that perform the desired operations.	A

R-RememberU – Understand A-Apply

Syllabus:

Unit Unit I Arithmetic Circuits 12 hrs

Binary addition – Binary subtraction – Logic gates – NAND and NOR as Universal gates – Postulates of Boolean Algebra – Theorems of Boolean Algebra – Simplification of Boolean expressions using Karnaugh maps and gates – Half adder – Full adder – Half subtractor – Full subtractor – Encoder – Decimal to BCD encoder – Decoder – Seven-segment decoders – Worked out examples.

Unit II Sequential circuits

12 hrs

Flip flops – RS flip flop – D flip flop – JK flip flop – Asynchronous counter – MOD-16 ripple counter – Synchronous counter – Decade counter and wave forms – Shift registers – Serial IN Serial OUT Shift registers – Ring counter – application to digital clock.

Unit III IC Technology and its applications 12 hrs

Introduction – Advantages of ICs-Classification by structure and function – IC terminology – IC technology: Fabrication of components like transistors, diodes, resistors and capacitors –

Characteristics of Logic Families – TTL Circuit – TTL Subfamilies – MOS Family – PMOS Circuit – NMOS Circuit – CMOS Circuit

Unit IV Memory

Semiconductor memory – Characteristics – RAM – ROM – ROM, PROMs and EPROMs: Programming – EEPROM: Flash memory – RAMs – SRAM – Sequential programming logic devices – PLD – CPLD – Magnetic memory – Magnetic recording – Magnetic bubble memories.

Unit V INTEL 8085 Microprocessor

12 hrs

12 hrs

Organization of a Microprocessor based system – Operating system – Single board Microprocessors – Microprocessor INTEL 8085 – Architecture details – Instruction Format – Instruction set of 8085 – Microprocessor addressing modes (with examples) – Programs to add two 8 bit numbers, to subtract two 8 bit numbers, to sort 8 bit numbers in ascending and descending order.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I,II, IV	Digital Principles and applications	A.P.Malvino and D.P.Leach	McGraw Hill Publishing, 4 th edition Chand & Co. Ltd.
III	Basic electronics solid state	B.L. Theraja	1 st edition 1998, Reprint 2002, New Delhi
V	Microprocessor, Architecture Programing and Application with 8085	Ramesh S.Gaonkar	Penram International Publishing, 3 rd edition
V	Digital Electronics and Microcomputers	R.K.Gaur	Dhanpat Rai Publications, 3 rd Revised and enlarged Edition

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III – Core Practical IV	Course Code: 617PP4
Semester: VI	No. of Credits: 3
No. of hours : 90 hours	P:R : 60:18
CIA Max. Marks: 40	ESE Max. Marks: 60

(P:Practical, R: Record)

Course Objectives: The Course aims

- > To provide practical exposure by applying the experimental methods to correlate with the Physics theory.
- Tofamiliarize ICs, Electronic meters for various measurements.
- > Tofamiliarize 8085 Microprocessor and to provide hands on experience in the assembly language Programs using 8085 Microprocessor
- > Todevelop intellectual communication skills and discuss the basic principles of scientific concepts in a group
- To develop troubleshooting skills, independent thinking and team work.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Use optical sources and lasers to study the optical parameters, record the data and interpret the results.	A
CO 2	Draw the electrical circuit, select the appropriate meters, perform the experiments, record and interpret the results	A
CO 3	Determine the physical constants such as Stefan's constant, dielectric constant, e/m of an electron using appropriate devices and analyse the results	A
ÇO 4	Construct the logic circuits using appropriate IC's to verify gates, Universal building block, flip flops, De-Morgans theorem, counters and verify the output.	A

CO 5	Write assembly language program execute it for its output using	A
	microprocessor 8085.	

A-Apply

Syllabus:

Part III - Core Practical IV - List of Practicals

(A minimum of 15 experiments)

(Use of LabView software)

- 1. Stoke's formula Spectrometer.
- 2. Measurement of thermo e.m.f. using thermo couple and Potentiometer
- 3. Absolute measurement of mutual inductance B.G.
- 4. High resistance by charging B.G.
- 5. Determination of Stefan's Constant
- 6. Determination of Dielectric constant for liquids
- 7. IC regulated power supply (5V regulator using 7805).
- 8. Determination of divergence & Beam spot of the laser source.
- 9. Measurement of Numerical aperture Optical fiber & Laser source
- 10. Characteristics of Photo detector Laser Source
- 11. Determination of particle size (Nano particles)
- 12. Determination of charge to mass ratio of an electron
- 13. Logic gates using discrete components & Verification of gates OR, AND, NOT, NAND, NOR & XOR using IC's.
- 14. NAND gates as universal building block.
- 15. NOR gates as universal building block
- 16. J-K flip-flop.
- 17. De-Morgan's theorems
- 18. R-S flip-flop.
- 19. Half adder and Full adder using ICs.
- 20. Half subtractor and Full subtractor using ICs.

- 21. Decade counter using ICs.
- 22. Addition & Subtraction of two 8 bit numbers using 8085 microprocessor.
- 23. Ascending & descending order of an array using INTEL 8085 microprocessor.
- 24. Multiplication & division of two 8 bit numbers using 8085 microprocessor.
- 25. Biggest number of elements in an array.

B.Sc. Physics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

. 1.4 4
redits: 4
:8
x. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives: The Course aims

- > To impart knowledge in the basic structure of the C Programming, declaration and the usage of the variables
- To expose the loop and decision making statements to solve the problem
- > To implement different operations on arrays
- > To exercise user-defined function to solve the problems
- > To exercise file concept to show input and output files in C

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO 1	Describe the basic features of C programming	U
CO 2	Explain the format of the branching and looping structures in C programming.	U

ÇO 3	Implement operations on arrays	U
CO 4	Handle character arrays and strings in c	A
CO 5	Write program using user-defined functions and arrays	A
CO 6	Write C code for a given problem	A

<u>U</u> – <u>Understand A-Apply</u>

Syllabus:

Unit I 11hrs

Constants, Variables and Data types -Basic structure of a C program–Character set – C tokens – Key words and identifiers – Constants, Variables – Data types – Declaration of variables – Assigning values to variables – Defining symbolic constants.

Operators and expressions - Arithmetic operators - Relational operators - Logical operators - Assignment operators - Increment and Decrement operators - Conditional operators - Bit wise operators - Special operators - Arithmetic expressions - Evaluation of expressions - Precedence of operators - Mathematical functions.

Unit II 11hrs

Managing input and output operations -Reading a character — Writing a character — Formatted input — Formatted output.

Decision Making and Branching - Decision making with if statement – Simple if statement – The if. else statement – Nesting of if...else statement – The else... if ladder – The switch statement – The ? Operator – The go to statement.

Unit III 10hrs

Decision Making and Looping - The While statement - The do statement - The for statement - Jumps in loops.

Arrays – One dimensional arrays – Declaration of one dimensional arrays – Initialization of one dimensional arrays – Two dimensional arrays – Initializing two dimensional arrays.

Unit IV 10hrs

Handling of character arrays and strings – Declaring and initializing string variables – Reading strings from terminal – Writing string to screen – String handling functions.

User defined functions: Elements of user defined function – Definition of function –Return values and their types – Function calls – Function declaration – Category of functions – No arguments and no return values – Arguments but no return values – Arguments with return values – No arguments but returns values – Recursion.

Unit V 10hrs

Structure –Defining a structure – Declaring structure variable – Accessing a structure member – Structure initialization – Structures within structures.

File management in C –Defining and opening a file – Closing a file – Input / Output operations on files – Error handling in files.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Programming in ANSI C	E.Balagurusamy	Tata McGraw Hill Publishing Co. Ltd, New Delhi, 7 th Edition, 2016.

B.Sc. Physics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Elective Practical Programming in C	Course Code: 617PE6
Semester: VI	No. of Credits: 1
No. of hours: 30	P:R - 22 : 8
CIA Max. Marks: 20	ESE Max. Marks: 30

(P:Practical, R: Record)

Course Objectives: The Course aims

> To make the student to learn a programming language and to develop the skill of writing

programs in C.

- ➤ To practice the use of conditional and looping statements.
- > To implement arrays and functions in the Program.
- To gain skills to handle strings and files.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Write algorithm and C code for Physics problems, execute it and analyze for its output	A
CO 2	Write C program for problem based on numerical analysis and mathematical concepts, execute it for its output.	A
ÇO 3	Write C program by using characters, arrays and execute it for its output.	A

A-Apply

Syllabus:

Part III - Elective Practical Programming in C - List of Programs (A Minimum of 8 Programs)

- 1. Temperature conversion.
- 2. Roots of a quadratic equation.
- 3. Matrix multiplication.
- 4. Ascending and Descending order of an array.
- 5. Computation of AC current in a circuit that contains resistance, inductance and capacitance in series.
- 6. Program using Simpson's rule and Trapezoidal rule.
- 7. Projectile problem.
- 8. Program for fourth order Runge Kutta method.
- 9. Product of factorials of 'n' numbers using recursion.
- 10. Program using string handling functions.

- 11. Arranging Strings in alphabetical order
- 12. Mark list using files.

B.Sc. Physics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part IV – Skill Enhancement Course- IV	Course Code: 617PS4			
Institutional Training				
Semester: VI	No. of Credits: 3			
No. of hours: 45	I:R 30:15			
CIA Max. Marks: 75	ESE Max. Marks: -			

(I: Internship Training, R:Report writing)

Preamble:

Measurement systems are traditionally used to measure physical and electrical quantities, such as mass, temperature, pressure, capacitance and voltage etc. However, they can also be designed to locate things or events, such as the epicenter of an earthquake, employees in a building, partial discharges in a high voltage power cable, or a land mine. Often, a measurement system is called upon to discriminate and count objects, such as red blood cells, or fish of a certain size swimming past a checkpoint. A measurement system is often made a part of the control system. The old saying 'if you can't measure it, you can't control it' is certainly a valid axiom for both the Control Technician as well as an Instrumentation engineer.

Knowledge of instrumentation is critical in light of the highly sensitive and precise requirements of modern processes and systems. Rapid development in instrumentation technology coupled with the adoption of new standards makes a firm, up-to-date foundation of knowledge more important than ever in most science and engineering fields. Based on the requirement of these knowledge and expertise for the Industry, the students are acquainted with latest equipments and testing methods and also the calibration by undergoing a Hands-on Training in Calibration and measurements during their Internship programme.

Course Objectives: The Course aims

> To familiarize the latest Equipments and Standards available for various levels such as industry standards, Research standards, laboratory standards etc.

- > To learn the techniques of operation of the devices for the purpose.
- ➤ To learn and perform practical work with equipments and observe various parameters related to errors, corrections, drifts, noise, repeatability, reproducibility, accuracy and precision.
- > To make a record of these and conduct analysis of the results to disclose about the safety and security of the instruments and also their accuracy in the parametric measurements.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	gain knowledge about the availability of testing methods and calibration techniques.	R
CO 2	familiarize about the equipments and will be able to handle them with care during the programme as well as in future.	U
ÇO 3	acquire an Understand about the parametric measurements and the need to conduct the testing for the purpose.	U
CO 4	interpret on the results obtained by conducting the analysis in- depth and thus generating an awareness about validity and performance of the equipments	A
CO 5	Write a Report and present it with suitable figures, graphs, tabulations etc	A
CO 6	Work confidently and behave with high ethical standards, team spirit and integrity,	A

R-Remember U – Understand A-Apply

B.Sc. Mathematics / **B.Sc.** Chemistry

Semester I & II

(For the students admitted from the academic year 2021 –2022 onwards)

Course: Part III- Allied Physics Practicals	Course Code: 221AMP/221ACP
Semester: I & II	No. of Credits: 2
No. of hours : 30 hours /Semester	P:R - 22:8
CIA Max. Marks: 25	ESE Max. Marks: 25

(P: Practical, R: Record)

Course Objectives:

- To impart practical knowledge in various areas of Experimental Physics.
- To develop skills in measurements using instruments working with Physics principles.
- To correlate the theory with practicals to improve the level of understanding.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	BTL
CO	Determine the acceleration due to gravity at a place using compound pendulum	An
1		
CO	Determine the elastic constants of the materials and analyse the results	An
2		
CO	Determine the optical parameters using optical sources and lasers and interpret the	An
3	results.	
ÇO	Calibrate the given electrical meters using appropriate circuit components, record	An
4	the data, draw the calibration graph and interpret the results.	
CO	Draw the logic circuits choose appropriate IC's to verify gates, Universal building	An
5	block, De-Morgans theorems.	

An-Analyse

Syllabus:

Part III- Allied Physics Practicals - List of Practicals

(A minimum of 12 experiments)

- 1. Acceleration due to gravity Compound pendulum
- 2. Young's modulus Non-uniform bending Optic lever, Scale and Telescope.
- 3. Young's modulus Cantilever depression Scale and Telescope.
- 4. Rigidity modulus of the material of the wire Torsion Pendulum.

- 5. Rigidity modulus of the material of the rod Static torsion.
- 6. Refractive index of the material of the prism Spectrometer
- 7. AC frequency Sonometer
- 8. Calibration of low range voltmeter Potentiometer.
- 9. Calibration of high range ammeter Potentiometer.
- 10. Measurement of specific resistance Potentiometer.
- 11. Temperature co-efficient of resistance Ohm's law Thermistor.
- 12. Characteristics of a Zener diode.
- 13. Characteristics of FET.
- 14. Characteristics of a junction diode.
- 15. Verification of AND, OR, NOT, NAND, NOR & XOR gates IC's.
- 16. NAND as universal building block.
- 17. De-Morgan's theorems using logic gates.
- 18. NOR as universal building block.
- 19. Wavelength of LASER source Grating
- 20. Reconstruction of a Hologram Demonstration

Department of Physics

Sri GVG Visalakshi College for Women, (Autonomous)

Affiliated to Bharathiar University

Re- Accredited at A+ Grade by NAAC (Fourth Cycle)

An ISO 9001:2015 Certified Institution

Udumalpet - 642128, Tamilnadu

Skill Development / Employability / ED Courses offered

Name of the Course	Course Code	Activities/Content with a direct bearing on Employability/ Entrepreneurship/ Skill development							
PG Physics									
Core II Mathematical Physics I	21MP02	Skill development: Problem solving sessions							
Core IV - Semiconductor Circuits and Applications	21MP04	Employability: Designing electronic circuits							
Practical I	21MPP1	Skill development- Laboratory sessions							
Digital Circuits, Microprocessor and Microcontroller	21MPE1	Skill development: Designing circuits, Programming skills							
Core V Mathematical Physics II	21MP05	Skill development: Problem solving sessions							
Practical II	21MPP2	Skill development: Laboratory sessions, Designing electronic circuits							
Core XI Molecular Spectroscopy	17MP11	Employability: Spectral analysis of the compounds							
Practical III	17MPP3	Skill development: Laboratory sessions, Designing electronic circuits							

Elective III Analog and Digital	17MPE5	Employability: Communication sectors
Communications		
Internship / Summer Fellowship	17MPIS	Skill development: Real time skills in the
		research labs, Technical skills &
		communicative skills
Core VIII Computational	18MP13	Chill dayslanmant. Dua quammina altilla fo
Core XIII-Computational	161/117	Skill development: Programming skills &
Physics(Theory & practical) IV		debugging skills
Semester		
Project and viva voce	18MPPV	Skill development: Experimental / theoretical
		Project work, submission of the report & viva
		voce

Curriculum Design

Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

M.Sc Physics

Scheme of Examination – CBCS & OBE Pattern

(For the students admitted from the academic year 2021-2022 onwards)

Sem	Course	Course Title	Ins.	Examination				
	Code		Hrs/	Dur.	CIA	ESE	Total	Credits
			Week	Hrs	Mar	Marks	Marks	
					ks			

	21MP01	Core I - Classical Mechanics	5	3	50	50	100	4
	21MP02	Core II - Mathematical Physics I	5	3	<mark>50</mark>	50	100	4
	21MP03	Core III - Modern Optics	4	3	50	50	100	4
	21MP04	Core IV - Semiconductor Circuits and Applications	<mark>5</mark>	3	<mark>50</mark>	50	100	4
I	21MPP1	Practical I	<mark>6</mark>	<mark>4</mark>	<mark>50</mark>	50	100	3
	21MPE1/ 21MPE2	Elective I - Digital Circuits, Microprocessor and Microcontroller /Biophysics	5	3	50	50	100	4
	21MP05	Core V - Mathematical Physics II	<mark>5</mark>	<mark>3</mark>	<mark>50</mark>	<mark>50</mark>	100	4
	21MP06	Core VI -Quantum Mechanics I	6	3	50	50	100	5
	21MP07	Core VII - Electromagnetic Theory	6	3	50	50	100	5
	21MPP2	Practical II	<mark>6</mark>	<mark>4</mark>	<mark>50</mark>	<mark>50</mark>	100	3
II	21MPE3/ 21MPE4	Elective II:Nanoscience and Applications /Thin film Technology	5	3	50	50	100	4
	21MGCS	Cyber Security	2	2	50	-	50	Grade
	21MPA1/ 21MPA2/2 1MPA3	Advanced Learner's Course I – Astrophysics / Photovoltaic Cells/ Online Courses – SWAYAM/ NPTEL/MOOC		3	-	100	100	4*

Curriculum Design

Sri G.V.G. Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

Post Graduate Department of Physics

M.Sc. Physics

Scheme of Examination – CBCS Pattern

(For the students admitted during the academic year 2018 - 2019 only)

		Ins. Hrs Examination / week						
Se mes ter	Course Code	Course Title	/ week	Dur. Hrs	CIA Mark s	ESE Marks	Total Marks	Credits
	17MP01	Core I - Classical Mechanics	5	3	25	75	100	4
	17MP02	Core II - Mathematical Physics I	5	3	25	75	100	4
	17MP03	Core III - Modern optics	4	3	25	75	100	4
	17MP04	Core IV - Semiconductor Circuits and Applications	5	3	25	75	100	4
I	17MPP1	Practical I	6	4	40	60	100	4
	17MPE1/	Elective I: Nano science and Nanotechnology/	5	3	25	75	100	
	17MPE2	Thin film Technology	5	3	25	75	100	4
	17MP05	Core V - Mathematical Physics II	5	3	25	75	100	4
	17MP06	Core VI -Quantum Mechanics I	5	3	25	75	100	4
	17MP07	Core VII - Condensed Matter Physics	4	3	25	75	100	4

	18MPPV	Project and Viva-voce	<mark>25</mark>		100	100	200	8
	18MP13	Core XIII - Computational Physics (Theory & Practical)	5	3	40	<mark>60</mark>	100	4
	17MPIS	Internship/ Summer Fellowship			150	-	150	<mark>6</mark>
	18MPE6	Biophysics	5	3	25	75	100	4
III	17MPE5/	Elective III - Analog and Digital Communications /	5	3	<mark>25</mark>	<mark>75</mark>	100	
	17MPP3	Practical III	<mark>6</mark>	6	40	<mark>60</mark>	100	4
	17MP12	Core XII - Nuclear and Particle Physics	4	3	25	75	100	4
	17MP11	Core XI - Molecular Spectroscopy	5	3	25	<mark>75</mark>	100	4
	17MP10	Core X - Electromagnetic Theory	5	3	25	75	100	4
	17MP09	Core IX - Quantum Mechanics II	5	3	25	75	100	4
	17MPA1	Advanced Learner's Course I – Astrophysics		3	-		100	4*
	17MGCS	Cyber Security	2	2	50	-	Grade	Grade
		Energy Physics	4	3	25	75	100	
	17MPE3 / 17MPE4	Elective II - Digital Electronics and Microprocessor /	4	3	25	75	100	4
	17MPP2	Practical II	6	4	40	60	100	4
II	17MP08	Core VIII– Statistical Mechanics	4	3	25	75	100	4

IV		Advanced Learner's						
	1	Course II - Plasma			400	4.0.		
	18MPA2	Physics /Advanced		3			100	4*
	18MPA2	Materials/Online Courses						
		-SWAYAM/						
		NPTEL/MOOC						

M.Sc. Physics Semester I

(For the students admitted from the academic year 2021–2022 onwards)

Course: Core II – Mathematical Physics –I	Course Code: 21MP02
Semester: I	No. of Credits: 4
No. of hours: 75	C:T - 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- > To educate the concepts related to the various types of differential equations and arriving at solutions.
- > To have a good grasp of Laplace and Fourier transforms and its applications in solving differential equations and periodical wave functions.
- To develop skill in solving problems of partial differential equations.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO 1	Solve Legendre and Laguerre differential equations and deduce the generating and recurrence functions that are common in physical sciences.	A
CO 2	Solve differential equations like Bessel and Hermite functions and deduce the generating functions and recurrence formulae.	A
ÇO 3	Solve Laplace transform of periodic functions and its application to differential equations.	A
CO 4	Solve the periodic functions using Fourier series and apply integral transforms.	A

CO 5	Solve the partial differential equations using Laplace equations,	A
	Fourier equations and D'Alembert's equations.	

A-Apply

Syllabus:

Unit I Differential Equations 13 hrs

Legendre Differential Equation and Legendre function – Generating function of Legendre Polynomials – Rodrigue's formula for Legendre polynomials – Recurrence formulae for $P_n(x)$ – Laguerre's Differential Equation and Laguerre Polynomials – Generating function of Laguerre Polynomials – Recurrence relations for Laguerre polynomials

Unit II Differential Equations

13 hrs

Bessel's Differential Equation and Bessel's function of first kind - Recurrence formulae for $J_n(x)$ - Generating function for $J_n(x)$ -Hermite Differential Equation and Hermite Polynomials – Generating function of Hermite Polynomials – Recurrence formulae for Hermite Polynomials.

Unit III Laplace Transforms

14hrs

Definition of Laplace Transform – Properties of Laplace Transforms: Linearity Property – Change of scale property – First Translation property and second translation property – Derivative of Laplace Transform – Laplace Transform of the Derivative of a function.

Laplace Transform of Periodic Functions: Saw tooth wave – Square wave- Half wave rectifier – Inverse Laplace Transform – Properties of inverse Laplace transform: Linearity Property – Change of scale property – First translation property – Second translation property.

Application of Laplace Transforms to Differential equations: ordinary differential equation with constant coefficients – Ordinary differential equation with variable coefficients.

* Unit IV Fourier series and Fourier Transform

12hrs

Fourier series – Evaluation of the coefficients of Fourier series –Drichlet's conditions – Problems – Complex form of Fourier series – Fourier series in the interval (0,T)

Fourier Transform – Fourier Sine and Cosine Transforms – Properties of Fourier transform – Fourier transform of a derivative.

Unit V Partial Differential Equations in Physics

13 hrs

Introduction – Solution of Partial differential equations by the method of separation of variables – Solution of Laplace's equation in Cartesian coordinates-Two dimensional Steady flow heat –

Diffusion equation or Fourier equation of heat flow-Two dimensional flow heat – The equation of motion for the vibrating string – D' Alembert's Solution.

*Self Study Unit

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I – V	Mathematical Physics	Sathyaprakash	Sultan Chand & sons 5 th Revised Edition, 2011
I – V	Mathematical Physics	P.K.Chattopadhyaya	New age index publishers 2 nd Edition, 2013

M.Sc. Physics Semester I

(For the students admitted from the academic year 2021 – 2022 onwards)

Course: Core IV Semiconductor Circuits and Applications	Course Code: 21MP04
Semester: I	No. of Credits: 4
No. of hours: 75	C:T - 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- > To familiarize the properties of semiconductors with application to the tunnel diode, Thyristor and SCR.
- > To provide knowledge in the operational principle, mode and characteristics of FET and interpret FET and MOSFET amplifier circuits for small signal for various frequencies.
- > To study the characteristics of sinusoidal and non-sinusoidal oscillators using FET and UJT.
- > To familiarize Op-amp characteristics and its applications.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's Taxonomy level
		Tuxonomy level
CO 1	Discuss the working principle of Tunnel diode, LCD, Thyristor,	U
	SCR and UJT and its applications.	
CO 2	Compare BJT and FET and study the transfer characteristics of	A
	JFET and MOSFET.	

ÇO 3	Draw amplifier circuit for various frequencies using FET and	A
	MOSFET.	
CO 4	Draw the circuits of oscillators, amplifiers and multivibrators and explain their working.	A
CO 5	Solve problems in ideal op-amp and practical op. amp and discuss the feedback in operational amplifiers with applications.	A

U-Understand, A-Apply

Syllabus:

Unit I Diodes and Thyristors

13 hrs

Introduction – Tunnel diode – Diode parameters – Applications – Photo diodes – Characteristics – Applications – Photoconductive cells – Characteristics – Applications – Liquid crystal display – Solar cells – Thyristors – Applications – Silicon Controlled Rectifiers (SCR) – SCR characteristics and rating – Applications : Temperature controller – Light activated SCR – Diac – Diac in proximity detector – Triac – Triac in Phase (power) control – UJT-Characteristics

Unit II Field Effect Transistors

13 hrs

JFET-Construction and operations – Characteristics of JFET: Drain characteristics – Effect of gate to source voltage on drain Characteristics – Transfer Characteristics – Specification sheet of JFET – JFET-Parameters – Comparison between FET and BJT – MOSFETs – Depletion type MOSFET-Construction and operation – Characteristics of Depletion type MOSFET – Enhancement type MOSFET – Construction, operation and characteristics of Enhancement MOSFET – Advantages of N-channel over P-channel MOSFETs – MOSFET handling –CMOS VMOS.

Unit III FET Amplifiers

13 hrs

Biasing the FET – Gate bias- self bias- setting a Q-point – Setting a Q-point using load line – Voltage divider bias – Current source bias – FET Amplifier – Common Source Amplifier – Analysis of Common Source Amplifier – Effect of AC load on Amplifier Parameters – Effect of external source resistance on voltage gain – FET Amplifier: Low frequency response – High frequency response – Enhancement MOSFET amplifier – Motion detecting system using JFET.

*Unit IV Oscillators

13 hrs

Comparison between an amplifier and an oscillator – Barkhausen criterion – FET Hartley oscillator – FET Colpitt's oscillator – Principle of RC oscillator – FET Phase shift oscillator – Wien bridge oscillator – Non sinusoidal oscillator – Astablemultivibrator –

Monostablemultivibrator – Bistablemultivibrator – Schmitt trigger – Blocking oscillator – UJT Relaxation oscillator-**Worked out Examples**

Unit V Operational Amplifiers (OP AMPs)

13 hrs

The Ideal OP-AMP – Inverting, Non-Inverting & Differential Amplifiers –Input offset voltage – Input offset current – CMRR – OP-AMP Characteristics – Open Loop Input Output Characteristics – Frequency Response and Slew rate – OP-AMP Applications: Adder, Subtractor, Integrator, Differentiator – Comparator – Voltage to Current Converter – Current to Voltage Converter – Electronic Analog Computation (Solving simultaneous equations) – **Worked out Examples**

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I	A Text book of Applied Electronics	R.S.Sedha	S.Chand and Company Reprint 2015
II & III	Electronic Devices and Circuit theory	Robert L.Boylestad and Louis Nashelsky	Prentice Hall of India Private Ltd, 4 th impression, 2016
IV	OP-AMPs & Linear Integrated Circuits	RamakantA.Gayakwad	Prentice Hall of India Private Ltd, 9 th Edition, 2008
V	Linear Integrated circuits	D.RoyChoudhury and Shail Jain	New Age International (P) Ltd 10 th Reprint, 2014.

M.Sc. Physics Semester I (For the students admitted from the academic year 2021 – 2022 onwards)

Course: Practical I	Course Code: 21MPP1
Semester: I	No. of Credits: 3
No. of hours: 90 hours	P:R 66:24
CIA Max. Marks: 50	ESE Max. Marks: 50

(P:Practical, R: Record)

Course Objectives:

> To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.

1.1.3a. EMP ED ESC PG Physics 2021-2022

^{*}Self Study Unit

- To provide an experience in handling equipments for the synthesis of nanomaterials.
- To develop the ability to record and analyze the experimental data.
- > To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.
- To develop troubleshooting skills, independent thinking and team work.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO 1	Determine the values of Young's Modulus, velocity of ultrasonics, inversion temperature and thickness of wire using appropriate instruments.	An
CO 2	Determine the wavelength of the source and study the characteristics of Photodiode and Phototransistor using laser source with suitable apparatus.	An
ÇO 3	Construct multivibrator, electronic filters, Flip – Flops, oscillators and IC regulated power supply using electronic components and study for its operation.	An
CO 4	Determine the dielectric constant of benzene and dipole moment of acetone.	A
CO 5	Examine the properties of semiconductors like resistivity and charge carrier density.	An

An-Analyse, A-Apply

Syllabus:

LIST OF PRACTICALS

(A minimum of 14 Experiments)

- 1. Young's Modulus Hyperbolic Fringe Method
- 2. Determination of λ Michelson's Interferometer
- 3. Measurement of Hall voltage in semiconductors
- 4. Resistivity Measurement– Four Probe Method
- 5. Dielectric constant of Benzene and Dipole moment of Acetone
- 6. Velocity of Ultrasonics in liquids Ultrasonic Interferometer
- 7. Characteristics of Photo diode & Photo transistor Laser Source
- 8. Inversion temperature of Thermocouple
- 9. Thickness of wire by Air Wedge and diffraction

- 10. Characteristics of FET BFW 10/11
- 11. Construction of an AstableMultivibrator
- 12. RC Coupled Amplifier Single stage using FET
- 13. Colpitt's Oscillator
- 14. Hartley Oscillator
- 15. IC Regulated power supply $(9-0-\overline{9})$ V
- 16. Half Adder, Full Adder (NAND circuits)
- 17. R-S & J-K Flip Flop
- 18. Construction of a Low pass and a High pass filter using OPAMP 741
- 19. Construction of an Adder and a Subtractor using OP AMP 741
- 20. Wien Bridge Oscillator
- 21. Parameters of Op-Amp
- 22. Design of Differential Amplifier

M.Sc. Physics Semester I

(For the students admitted from the academic year 2021 – 2022 onwards)

Course:Elective I Digital Circuits, Microprocessor and	Course Code: 21MPE1
Microcontroller	
Semester: I	No. of Credits: 4
No. of hours: 75	C:T - 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- > To provide a thorough understanding of Boolean equations and digital circuits.
- To describe the operation of various flip-flop circuits and its applications.
- ➤ To expose different types of counters and memories.
- > To foster ability to write the programming using 8085 microprocessor and microcontroller 8051.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO 1	Solve the Boolean equations, draw different types of logic gates, adders, subtractors, multiplexer and demultiplexers.	A
CO 2	Design various flipflops, multivibrators using IC 555 and shift registers.	U

ÇO 3	Explain different types of counters and memories with their classification	U
CO 4	Write an assembly language program for 8085 microprocessor for a given application.	A
CO 5	Write an assembly language program for 8051 microcontoller for a given application.	A

A-Apply, U-Understand

Syllabus:

Unit I Data Processing Circuits (Or) Digital Data Circuit 13 hrs

Logic Gates – Boolean Algebra and De-Morgan's Theorems – Sum of Products Method – Karnaugh's Map and Simplifications – Half Adder , Full Adder – Half Subtractor, Full Subtractor – Binary Adder/Subtractor – Multiplexer – (16-1) Multiplexer – Demultiplexer – (1-16)- De multiplexer – Parity generators/ checkers.

Unit II Flip Flops and Registers

13 hrs

 $RS\ Flip\ Flop-Clocked\ RS\ Flip\ Flop-D\ Flip\ Flop-Edge\ Triggered\ D-Flip\ Flop-JK\ Flip\ Flop-JK\ Flip\ Flop-Stable-D-Flip\ Flop-Stable-D-Flip\ Flop-JK\ Flip\ Flop-Stable-D-Flip\ Flop-Stable-D-Flip\ Flop-Stable-D-Flip\ Flop-Stable-D-Flip\ Flop-D-Flip\ Flop-D-$

*Unit III Counters and Memories

13 hrs

Types of Counters – Asynchronous and Synchronous Counter – MOD-5 and Decade Counters – Ring Counters – Digital to Analog Converter: Binary Ladder Method – 4 bit Digital to Analog converter –Analog to Digital converter: Successive Approximation Method – Memory: ROMs, PROMs, EPROMs and EEPROMs – RAMs: SRAM and DRAM.

Unit IV Microprocessor

13 hrs

Intel 8085 Microprocessor – Architecture – Pin Configuration – Instruction format – Instruction Set of 8085 Microprocessor – Instruction Cycle – Timing Diagram – Op code Fetch Cycle – Memory Read Cycle for MOVE C, A & ADD M – Addressing Modes – Assembly Language Programming – Program to add and subtract two 8-bit numbers – Sort numbers by ascending and descending order

Unit V Micro controllers

13 hrs

Microprocessor Vs Microcontroller— Applications of Microcontrollers (qualitative only) — INTEL 8051 Microcontroller — Features of 8051 Microcontroller — Pin out of 8051 Microcontroller

- Architecture of INTEL 8051 Microcontroller Addressing modes 8051 Instruction execution
- 8051 Instruction set Data transfer Instructions Arithmetic Instructions Logic Instructions
- Control transfer/Program control
 8051Microcontroller program to add two 16 bit numbers
 8051 Microcontroller program to find the maximum number from a given ten 8-bit numbers

*Self Study Unit

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I, II & III	Digital Principles and Applications	A.P Malvino, D.P.Leach	Tata McGrw Hill, 7th Edition, 2011
IV	Introduction to Microprocessors	AdityaP.Mathur	TataMcGrw Hill, 3 rd Edition, 32 nd Reprint 2010
V	Advanced Microprocessor and Microcontroller	Prof.S.K.Venkataram	University Science Press, 1 st Edition, 2002 (Reprint 2008)

M.Sc. Physics Semester II

(For the students admitted from the academic year 2021 – 2022 onwards)

Course:Core V Mathematical Physics II	Course Code: 21MP05
Semester: II	No. of Credits: 4
No. of hours: 75	C:T - 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- To impart knowledge in the field of tensors and group theory
- > To explore the approach of complex variables and determination of residue theorem.
- > To deal with the problems on probability distribution and numerical method of solving the equations.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	Express Tensors in different formats and deduce Christoffel's symbol and transformation laws.	U

CO 2	Explain the concepts of group theory, Cayley's theorem and group symmetry to form irreducible representations.	U
CO 3	Discuss the properties of complex variables and related theorems	U
CO 4	Use probability equations and distribution theorem to solve problems involving physical phenomena	A
CO 5	Find the solutions of integral, differential and algebraic equations numerically.	A

U-Understand, A-Apply

Syllabus:

Unit I Tensors 13 hrs

Kronocker delta symbol– Scalars, Contra variant Vectors and Covariant Vectors –Tensors of Higher ranks – Algebraic operations of Tensors – Symmetric and Anti symmetric tensors – Invariant tensors $g_{\mu\nu}$, $g^{\mu\nu}g^{\mu}_{\nu}$ – Conjugate or Reciprocal Tensors – Christoffel's 3-index symbols – Transformation laws of Christoffel's symbols.

Unit II Group Theory

13 hrs

Concept of a group – Abelian group – Generators of a finite group – cyclic group –Group multiplication table- subgroups – co-sets – Conjugate elements and classes- Conjugate sub-groups – Isomorphism and Homomorphism – Permutation groups – Cayley's theorem – The group of symmetry of an equilateral triangle – group of symmetry of a square – Reducible and Irreducible Representations .

Unit III Complex Variables

13 hrs

Review of Algebraic operation on Complex Numbers – Complex Conjugates – Modulus and argument of a complex number – Graphical representation on argand diagram and trigonometric form – Functions of a complex variable – Limit, Continuity and differentiability – Definitions : Analytic function – The necessary and sufficient conditions for f(z) to be analytic : Cauchy-Riemann Differential Equations – Laplace's equations : Harmonic functions – Line integral of a complex function – Cauchy's Integral theorem – Cauchy's Integral Formula – Taylor's series – Cauchy Residue theorem

*Unit IV Probability

13 hrs

Probability: Priori Probability – Empirical Probability – Theorem of total Probability – Binomial theorem of Probability – Measures of central tendency, averages – Measures of dispersion – Karl Pearson's Coefficient of Correlation – Standard deviation as the sum of

 $distribution-Theoretical\ Distributions:\ Binomial\ distribution-Normal\ distribution-Theory\ of\ errors-Line\ of\ Regression.$

Unit V Numerical Methods 13 hrs

Numerical solutions of ordinary differential equations: Taylor series method Modified Euler's method – Fourth order Runge-Kutta method – Numerical Solutions of partial differential equations: Difference quotients and difference equations Solution of elliptic equations – Solution of Laplace's equations

Numerical integration: Quadrature formula for equidistant ordinates – Trapezoidal rule – Simpson's rule – Approximate solution of algebraic and transcendental equations: Newton-Raphson method – Gauss elimination method for solving a system of linear equations.

*Self Study Unit

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-IV	Mathematical Physics	Sathyaprakash	Sultan Chand & sons, 5 th Revised Edition, 2011
V	Numerical Methods	A. Singaravelu	MeenakshiPubllication, New Revised Edition, January2014

M.Sc. Physics

Semester II

(For the students admitted from the academic year 2021 – 2022 onwards)

Course: Practical II	Course Code: 21MPP2
Semester: II	No. of Credits: 3
No. of hours: 90 hours	P:R 66:24
CIA Max. Marks: 50	ESE Max. Marks: 50

(P:Practical, R: Record)

Course Objectives:

- > To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To provide an experience in handling equipments for the synthesis of nanomaterials.
- To develop the ability to record and analyse the experimental data.

1.1.3a. EMP ED ESC PG Physics 2021-2022

- > To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group.
- To develop troubleshooting skills, independent thinking and team work.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's Taxonomy level
		Taxonomy level
CO 1	Calculate the values of Refractive Index and Numerical	An
	Aperture of optical fiber using lasers	
CO 2	Calculate the values of Young's Modulus, Band gap energy,	An
	e/m and magnetic susceptibility using appropriate instruments	
ÇO 3	Construct the electronic circuits with OP amps, UJT, discrete	An
	electronic components and I.C and record the data and interpret	
	the results.	
CO 4	Execute assembly language programs using micro-controller and micro-processor.	An
CO 5	Synthesize nanoparticles and deposit thin film by different techniques.	An

An -Analyse

Syllabus:

LIST OF PRACTICALS

(A minimum of 14 Experiments)

- 1. Young's Modulus Elliptical Fringe Method
- 2. Determination of Refractive index of glass Michelson's Interferometer
- 3. Determination of Band Gap Four Probe method
- 4. Numerical aperture of an optical fibre Laser source
- 5. Determination of e/m using Thomson experiment
- 6. Magnetic Susceptibility- Quinck's method
- 7. Coating of thin Film Chemical Bath Deposition Method
- 8. Synthesis of Nano Particles Chemical Method
- 9. Synthesis of Nano Particles Planetary Ball Mill
- 10. Characteristics of UJT
- 11. Relaxation Oscillator UJT
- 12. RC Coupled amplifier Two stage (FET/BJT)
- 13. 555 Timer AstableMultivibrator
- 14. Four bit D/A converter using OPAMP
- 15. Constant current source using OPAMP
- 16. Half Subtractor, Full Subtractor (NAND circuits)
- 17. Characteristics of SCR

- 18. Construction of Integrator, Differentiator using OP AMP
- 19. 555 Timer Mono stable Multivibrator
- 20. INTEL 8085A Microprocessor Addition and Subtraction of two 8-bit numbers
- 21. INTEL 8051 MCS Microcontroller Addition of two 16-bit numbers
- 22. Microcontroller Find the maximum number from the given ten 8-bit numbers(INTEL 8051)
- 23. Shift registers using flipflop and IC's

M.Sc. Physics

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Core XI - Molecular Spectroscopy	Course Code: 17MP11
Semester: III	No. of Credits: 4
No. of hours: 75	C:T - 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C: Contact hours, T:Tutorial)

Course Objectives:

- To provide an introduction to molecular spectroscopy and its fundamental concepts.
- To impart information about the instrumentation for UV, IR, NMR, NQR, and ESR.
- > To learn the use of spectroscopic instruments in the determination of the structures of organic compounds.
- To understand the theory of the various instruments and the interpretation of spectra.
- To familiarize the applications of molecular spectroscopy to different areas of science.

Syllabus:

Unit I Infrared Spectroscopy

13 hrs

The Vibrating Diatomic molecule: The energy of a Diatomic molecule – The simple harmonic oscillator – The Anharmonic oscillator – The Diatomic Vibrating Rotator – Breakdown of the Born-Oppenheimer approximation: The interaction of Rotations and Vibrations – The Vibrations of Polyatomic molecules: Fundamental of vibrations and their Symmetry – The influence of rotation on the spectra of polyatomic molecules – Linear molecules – Techniques and Instrumentation: Outline – Fourier Transform Spectroscopy

Unit II Microwave Spectroscopy and Raman Spectroscopy

13 hrs

Microwave Spectroscopy: The Rotation of molecules – Rotational spectra – Diatomic Molecules – The Rigid Diatomic Molecule – The Intensities of Spectral lines – Polyatomic molecules – Linear molecules – Symmetric top molecules – Techniques and Instrumentation – Chemical analysis by Microwave Spectroscopy – The Microwave oven.

Raman Spectroscopy: Introduction – Quantum theory of Raman effect – Classical theory of Raman effect: Molecular Polarizability – Pure rotational Raman spectra: Linear molecules – Symmetric top molecules – Vibrational Raman Spectra: Raman activity of vibrations – Vibrational Raman spectra – Structure determination from Raman and Infra-Red spectroscopy – Techniques and Instrumentation.

Unit III Electronic Spectroscopy of Molecules

13 hrs

Electronic spectra of Diatomic molecules: The Born-Oppenheimer Approximation – Vibrational Coarse Structure: Progressions – Intensity of Vibrational–Electronic spectra: The Franck-Condon Principle – Dissociation energy and Dissociation Products – Rotational Fine Structure of Electronic – Vibration Transitions – The Fortrat Diagram – Predissociation.

Chemical Analysis by Electronic Spectroscopy – Techniques and Instrumentation. Molecular Photoelectron Spectroscopy – X-Ray Photoelectron Spectroscopy (XPES).

Unit IV NMR and NQR Spectroscopy

13 hrs

NMR Spectroscopy: Introduction to NMR — Quantum description of NMR — Instrumentation — Chemical shift — Spin-spin coupling — Applications of NMR spectroscopy — Structural diagnosis by NMR — Exchange effects — Determination of Activation energy — Limitations of NMR.

NQR Spectroscopy Introduction to NQR – Theory of NQR – Instrumentation – Sample requirements – Applications of NQR – Nature of chemical bond – Structural information of Group III Halides – Limitations.

*Unit V ESR and Mossbauer Spectroscopy

13 hrs

ESR Spectroscopy Introduction – Theory of ESR – Instrumentation – Presentation of ESR spectrum – Hyperfine splitting – Determination of g-value – Line width – Applications (Qualitative only) – Study of free radicals – structure determination – Analytical applications – Miscellaneous applications.

Mossbauer Spectroscopy Principles of Mossbauer spectroscopy – Instrumentation – Applications of Mossbauer spectroscopy – Chemical shift – Quadrupole Effects – The effect of Magnetic Field.

*Self Study Unit

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I, II, III &V	Fundamentals of Molecular Spectroscopy	C.N.Banwell and E.MMcCash	Tata McGraw-Hill Publishing 35 th Reprint 2010
IV & V	Instrumental Methods of Chemical Analysis	Gurdeep Chatwal and Sham Anand	Himalaya Publishing House 2 th Edition, 1984

M.Sc. Physics

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Practical III	Course Code: 17MPP3
Semester: III	No. of Credits: 4
No. of hours : 90 hours	P:R 66:24
CIA Max. Marks: 40	ESE Max. Marks: 60

(P:Practical, R: Record)

Course Objectives:

- > To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- To provide an experience in handling equipments for the synthesis of nanomaterials.
- To develop the ability to record and analyse the experimental data.
- > To develop intellectual communication skills and discuss the basic principles of scientific concepts in a group
- To develop troubleshooting skills, independent thinking and team work

Syllabus:

List of Practicals (A minimum of 12 Experiments)

- 1. Magnetic Susceptibility-Guoy balance
- 2. Wavelength of Laser Beam Fabry Perot Interferometer
- 3. e/m Magneton method using CRT

- 4. Characteristics of Solar Cell Laser Source
- 5. Verification of Malus Law & Determination of Brewster's angle Laser Source
- 6. Measurement of linear absorption co-efficient of a transparent material (Glass Slide) Laser Source.
- 7. Determination of Particle size Laser Source
- 8. Electrodeposition method of the particles
- 9. Conductivity Studies of Nano materials
- 10. Synthesis of Polymers
- 11. Crystal growth of materials
- 12. Construction of Bistable Multivibrator BJT
- 13. Up-Down Counter using IC 74190, IC 7447 and LED 71312 (Seven Segment Display)
- 14. Frequency Modulation using 555 Timer
- 15. Construction of 12-0-12 VPower Supply IC 7812 and IC 7912
- 16. Construction of Band Pass and Band rejection OPAMP 741
- 17. Frequency Response of FET Amplifier (BFW10/11)
- 18. Schmitt Trigger OPAMP 741 and 555 Timer
- 19. Sine Wave, Square Wave and Triangular Wave Generation OPAMP 741
- 20. Voltage to Frequency Converter OPAMP (741,709) and BFW10
- 21. Program to arrange the given ten 8-bit numbers in ascending order INTEL 8051 Micro Controller.
- 22. Ascending and Descending order of an array of numbers INTEL 8085A Microprocessor.

M.Sc. Physics Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Internship / Summer Fellowship	Course Code: 17MPIS
Semester: III	No. of Credits: 6
No. of hours : -	C:T -

CIA Max. Marks: 150		ESE Max. Marks: -

(C: Contact hours, T:Tutorial)

Course objectives

- To inspire and motivate the young students to take up a career in Science
- > To create an awareness on various career options available for young Woman Scientists.
- To explore avenues for entrepreneur development for Woman through Science.
- To develop human resource that is comfortable with both Science and Technology and therefore tuned to converting knowledge into innovation for wealth generation.
- To gain knowledge about the specific areas of research.
- To familiarize the availability of new research equipments.

Course Evaluation Methods:

Internship Report		
(submission before the end of III Semester)		
a) Activity performed	25 marks	
b) Material preparedc) Attendance	25 marks	
	25 marks	
Viva- voce (Internal examiner only)		
•	30 marks	
a) Presentation prepared	20 marks	
b) Delivery knowledge	25 marks	
c) Response to Q &A		

M.Sc. Physics Semester IV

(For the students admitted during the academic year 2018 – 2019 only)

Course: Core XIII - Computational Physics (Theory & Practical)	Course Code: 18MP13
Semester: IV	No. of Credits: 4
No. of hours: 75	C:P:A - 39:26:10
CIA Max. Marks: 40	ESE Max. Marks: 60

(C: Contact hours, P:Practical, A: Assignment)

Course Objectives:

- To learn about Object Oriented Programming
- To learn the syntax and semantics of the C++ programming language
- 1.1.3a. EMP ED ESC PG Physics 2021-2022

- To learn how containment and inheritance promote code reuse in C++
- To demonstrate skills to write and develop simple programs in C++
- Formulate and computationally solve a selection of problems in physics
- Visualize physical problems and their solutions on a computer

Syllabus:

Unit I Principles of Object-Oriented Programming

7 hrs

Structure of C++ Program - Tokens - Keywords - Identifiers and Constants - Basic data types - User defined data types - Derived data types - Symbolic Constants - Type Compatibility - Declaration of Variables - Dynamic Initialization of Variables - Operators in C++ - Scope Resolution Operator - Manipulators.

Unit II Expressions

7 hrs

Expressions and their types: Special Assignment Expressions – Implicit conversions – Control Structures

Unit III Functions, Classes and Objects

9 hrs

Functions in C++: The Main Function – Function Prototyping – Call by Reference – Return by Reference – Inline Functions – Default Arguments – Constant Arguments – Function Overloading – Math Library Functions.

Classes and Objects: Specifying a class – Defining member functions – Making an outside function inline – Private member functions – Arrays within a class – Static Data members – Static member functions – Arrays of objects – Objects as function arguments – Friendly Functions.

Unit IV Constructors and Inheritance

9 hrs

Constructors: Parameterized constructors – Multiple constructors in a class – Constructors with default arguments – Dynamic Initialization of objects – Copy constructors – Dynamic Constructors.

Inheritance: Defining Derived Classes – Single Inheritance – Making a Private member inheritable – Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance.

* Unit V Operator Overloading

7 hrs

Defining Operator Overloading – Overloading unary Operators – Overloading binary Operators using Friends – Manipulation of strings using operators – Rules for overloading operators.

*Self Study Unit

List of Programs (A minimum of 7 Programs) **26 hrs** 1. Binding energy per nucleon – Semi-empirical mass formula Determination of Bond length for diatomic molecules 2. Determination of lattice parameters of a crystal 3. 4. Determination of particle size Eigen values for a Particle in a box 5. Program to solve electrical network 6. 7. Acceptance angle & Numerical aperture of an optical fiber 8. Determination of half-life and Mean life period of radioactive elements 9. Overloading of Arithmetic Operators Operator Overloading – Strings 10. Resistances in Series and in Parallel 11.

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I,III,IV	Object Oriented Programming with C++	E.Balagurusamy	Tata McGraw-Hill Publishing 5 th Edition, 2011
II, V	Object Oriented Programming with ANSI & Turbo C++	Ashok N.Kamthane	Dorling Kindersley (India) Pvt. Ltd., Licensees of Pearson Education in South Company Limited, New Delhi, Asia, 7 th Impression, 2009

M.Sc. Physics

Semester IV

(For the students admitted during the academic year 2018 – 2019 only)

Course: Project & Viva – voce	Course Code: 18MPPV
Semester: IV	No. of Credits: 8
No. of hours: 25 hrs / Week	C:R -
CIA Max. Marks: 100	ESE Max. Marks: 100

(C: Contact hours, R: Report)

Course Objectives:

- To familiarize the students with the areas of research
- To impart knowledge in the collection of literature, list of references (books as on-line) as well as references in the text.
- To explore the knowledge about the presentation of experimental methods.
- To facilitate the students about the choice of the material.
- To secure knowledge about the background of the current research.
- To develop the experimental skills in the synthesis of sample.
- To interpret the skills in the analysis of synthesized samples.
- To experience an independent learning.
- To develop a confidence in pursuing research in future.

Course Evaluation Methods:

Evaluation	Components	Marks	Marks Total
Internal	Literature Survey and Topic Confirmation	20 Marks	
	Experimental Work and Analysis	40 Marks	100
	Completion of work, Report Submission and Internal Viva Voce by HOD and Guide	40 Marks	
External	Report	50 Marks	
Lacillai	Viva- voce	50 Marks	100