Curriculum Design

Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

B.Sc. Mathematics

Scheme of Examination – CBCS & OBE Pattern

(For the students admitted from the academic year 2021-2022 onwards)

Sem	Course	Course Title	Ins.	Examination				
	Code		Hrs/					Credits
	coue		Week	Dur.	CIA	ESE	Total	
				Hrs	Marks	Marks	Marks	
	121TA1/	Part I- Language I	6	3	50	50	100	3
	121MY1/							
	121HD1/							
	121FR1							
	121EN1	Part II – English I	6	3	50	50	100	3
		Part III						
	121M01	Core I Algebra and Calculus	5	3	50	50	100	4
Ι	121M02	Core II Differential Equations	5	3	50	50	100	4
		and Laplace Transforms						
	121AM1/	Allied I Physics I /	4	3	30	45	75	4
	121AM2	Chemistry I						
		Allied Physics Practical /						
		Chemistry Practical	2	-	-	-	-	-
	121VEG	Part IV-Value Education Human	2	2	50	_	50	1
		Values and Gender Equity	_	-	00			-
	221TA2/	Part I- Language II	6	3	50	50	100	3
	221MY2/							
	221HD2/							
	221FR2							
	221EN2	Part II - English II	6	3	50	50	100	3
		Part III						
	221M03	Core III - Analytical Geometry of	5	3	50	50	100	5
II		Three Dimensions						
	221M04	Core IV- Operations Research	5	3	50	50	100	4
		with TORA						
	221AM3/	Allied II Physics II/	4	3	30	45	75	4
	221AM4	Chemistry II						
	221AMP/	Allied Physics Practical /	2	3	25	25	50	2
	221AMC	Chemistry Practical						
	221EVS	Part IV-Environmental Studies	2	2	50	-	50	1
	321TA3/	Part I – Language III	6	3	50	50	100	3
	321MY3/							
	321HD3/							
ш	321FR3							
	321EN3	Part II -English III	6	3	50	50	100	3

		Part III						
	321M05	Core V Vector Calculus and Fourier Series	3	3	50	50	100	3
	321M06	Core VI Statics	4	3	50	50	100	4
	321AM5/ 321AM6	Allied III Principles of Accountancy/ Mathematical Statistics I	6	3	50	50	100	5
	321NMC	Part IV- NME – Basic Mathematics for Competitive Examinations	2	2	50	-	50	2
	321MS1	Part IV- Skill Enhancement Course I Professional English for Mathematics	3	3	100	-	100	2
	321NGA	Part IV- General Awareness- Information security	Self Study	2	50	-	50	Grade
	421TA4/ 421MY4/ 421HD4/ 421FR4	Part I – Language IV	6	3	50	50	100	3
	421EN4	Part II- English IV	6	3	50	50	100	3
		Part III						
	421M07	Core VII Numerical Methods	3	3	50	50	100	3
	421M08	Core VIII Dynamics	4	3	50	50	100	4
	421AM7/	Allied IV	6	3	50	50	100	5
IV	421AM8	Statistics for Mathematics/						
		Mathematical Statistics II						
	421NGA	Part IV- General Awareness	2	2	50	-	50	2
	421MS2	Part IV- Skill Enhancement Course II Graph Theory	3	3	100	-	100	2
	421MA1/ 421MA2/ 421MA3	Advanced Learners Course – I Combinatorics / Statistical Quality Control/ MOOC	Self Study	3	-	100	100	4*
	521M09	Part III Core IX Real Analysis I	6	3	50	50	100	5
	521M10	Core X Complex Analysis I	5	3	50	50	100	5
	521M11	Core XI Abstract Algebra	5	3	50	50	100	5
V	521M12	Core XII Group Project	5	-	50	50	100	4
	521ME1/ 521ME2	Elective I: Astronomy / Elementary Number Theory	6	3	50	50	100	5
	521MS3	Part IV - Skill Enhancement Course III - Sequences and Series	3	3	100	-	100	2

	521NGO/	Part IV- General Awareness-	Self	2	50	-	50	Grade
	521NGA	Online MOOC or Swayam	Study					
		Courses/Life Skills	-					
	621M13	Part III						
		Core XIII Real Analysis II	5	3	50	50	100	5
	621M14	Core XIV Complex Analysis II	5	3	50	50	100	5
	621M15	Core XV Linear Algebra	5	3	50	50	100	5
	621ME3/	Elective II Mathematical	6	3	50	50	100	5
	621ME4	Cryptography/ Fuzzy and						
	(01DE4/	Intuitionistic Fuzzy Theory	6	2	50	50	100	5
	021PE4/	Methods using C Programming	0	3	50	50	100	5
	021IVIE5	(T & P)/Programming with						
		Python (T & P)						
	621MS4	Part IV- Skill Enhancement	3	-	100	-	100	2
		Course IV Internship / Summer						
* **		Training/Short Term Course						
VI	621EX1/	Part V- Extension activity	-	-	50	-	50	2
	621EX2/	NCC/NSS/YRC/RRC/ Games						
	621EX3/							
	621EX4/							
	621EX5							
	621MA4/	Advanced Learners Course II	Self	3	-	100	100	4*
	621MA5/	Mathematics in Insurance /	Study					
	621MA6	Introduction to Wavelet						
		theory/MOOC						
	621NGA	Part IV- General Awareness	Self	2	50	-	50	Grade
		Professional Ethics	Study					
						Total:	3800	140

Starred credits are treated as additional credits (Optional)

Entrepreneurship Courses

B.Sc Mathematics

Semester II

[For the students admitted from the academic year 2021 – 2022 onwards]

Course: Part III Core IV Operations Research with TORA	Course Code: 221M04
Semester: II	No. of Credits: 4
No. of hours : 75	C:T: 65:10
CIA Max. Marks: 50	ESE Max. Marks:50

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To gain knowledge on techniques for solving linear programming problem.
- > To identify the optimum allocation of resources to respective destination.
- > To assign suitable resources to respective jobs.
- > To apply optimization in networks.
- > To develop knowledge in basic techniques to deal with inventory

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	solve the Linear Programming Problem using graphical, simplex	А
	and duality methods	
CO2	minimize the cost in transportation problems and assignment	А
	problems	
ÇO3	interpret the concept of game theory	А
CO4	apply the optimization techniques in inventory control	А
CO5	demonstrate the applications of various optimization tools to the	А
	real life problems involving networks.	

<u>A-Apply</u>

Syllabus:

Unit I 13 hrs
Linear Programming Problem – Graphical solution and Extension: Introduction – Graphical
solution method – Some exceptional cases – General linear programming problem – Canonical
and standard forms of L.P.P. Linear programming problem - Simplex method: Introduction -
Fundamental properties of solutions – The computational procedure – Use of artificial variables.
Chapter 3: Sections 3.1 - 3.5, Chapter 4: Sections 4.1 - 4.4
Note:Simplex method is solved using TORA

Unit II

13 hrs

Duality in Linear Programming: Introduction – General Primal-Dual pair – Formulating a dual problem – Primal-Dual pair in matrix form – Duality and Simplex method. Transportation

Problem: Introduction – LP formulation of the transportation problem – Existence of Solution in T.P – Duality in transportation problem – The transportation table – Loops in transportation tables – Triangular basis in a T.P – Solution of a transportation problem – Finding an initial basic feasible solution – Test for optimality – Economic Interpretation of u_j 's and v_j 's – Degeneracy in transportation problem – Transportation algorithm [MODI method]. Assignment Problem: Introduction – Mathematical formulation of the problem – Solution Methods of Assignment Problem.

Chapter 5: Sections 5.1 - 5.4, 5.7 Chapter 10: Sections 10.1 - 10.13, Chapter 11: Sections 11.1 - 11.3.

Note: Simplex method is solved using TORA

Unit III

13 hrs

Games and Strategies: Introduction – Two-person zero-sum games – Some basic terms – The Maximin – Minimax principle – Games without saddle points – Mixed strategies – Graphic solution of 2 x n and m x 2 games. Book 2 : Chapter 17: Sections 17.1 - 17.6

Unit IV

13 hrs

Inventory Control – I: Introduction – Types of Inventories – Reasons for carrying Inventories – The inventory decisions – Objectives of Scientific Inventory Control – Costs associated with inventories – Factors affecting inventory control – An Inventory Control Problem – The Concept of EOQ – Deterministic inventory problems with No shortages – Deterministic inventory problems with shortages – Problems of EOQ with Price Breaks. Chapter 19: Sections 19.1 - 19.12

Unit V 13 hrs
Network Scheduling by PERT/CPM: Introduction – Network: Basic Components – Logical
Sequencing – Rules of Network Construction – Concurrent Activities – Critical path analysis –
Probability considerations in PERT – Distinction between PERT and CPM.
Chapter 25: Sections 25.1 - 25.8

Book for study:

Unit	Name of the Book	Authors	Publisher
I - V	Operations Research	Kanti Swarup, P.K	Sultan Chand & Sons, New Delhi,
		Gupta, Man Mohan	Eighteenth Edition, 2015.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Operations Research: Theory and	J.K.Sharma	MacMillan India Ltd, Fourth
	Applications		Edition, 2010.
2	Operations Research: An Introduction	Hamdy A. Taha	Pearson India Pvt Ltd, 2016.

Skill Development Courses

B.Sc Mathematics

Semester I

(For the students admitted from the academic year 2021 – 2022 onwards)

Course: Part III Core I Algebra and Calculus	Course Code: 121M01
Semester: I	No. of Credits: 4
No. of hours :75	C:T: 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- > To impart knowledge about the convergence / divergence criteria of a given series.
- To appropriately use the Binomial, Exponential and Logarithmic series and to represent an infinite series in a closed form as the sum of infinite series.
- > To develop skills for solving the algebraic equations.
- > To expose the various properties of curvature of curves
- > To provide a knowledge of various forms of integrals and their applications.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	test the convergency and divergency of an infinite series.	А
CO2	apply binomial, exponential and logarithmic series to determine the sum of an infinite series	А
CO3	transform and solve algebraic equations.	А
CO4	determine the curvature of curves in different co-ordinate systems.	А
CO5	contextually acquire skill in comprehending and applying the properties of Beta and Gamma functions.	А

A-Apply

Syllabus:

Unit I	13 hrs
Convergency and Divergency of series: Definitions and elementary results - Some gener	al
theorems concerning infinite series - Series of positive terms - Comparison tests	Cauchy's
condensation test – D'Alembert's Ratio test – Cauchy's Root test.	
Note : Only Statement of the tests are included.	
Book 1: Chapter 2: Sections 8 – 17	

Unit II

Binomial Theorem: Application of the Binomial Theorem to the summation of series. Exponential and Logarithmic series: The Exponential Theorem (statement only) – Summation – The Logarithmic series – Modification of the Logarithmic series – Series which can be summed up by the Logarithmic series.

Book 1: Chapter 3: Section 10, Chapter 4: Sections 3, 5, 6, 7 and 9

Unit III

Theory of Equations: Transformation of Equations – Reciprocal Equation – To increase or decrease the roots of a given equation by a given quantity – Form of the quotient and remainder when a polynomial is divided by a binomial – Removal of terms – Descartes' Rule of signs. Book 1: Chapter 6: Sections 15 - 19, 24

Unit IV

Differential Calculus: Envelopes, Curvature of plane curves: Envelopes – Method of finding the envelope – Curvature – Cartesian formula for the radius of curvature – The coordinates of the center of curvature – Evolute and involute – Radius of curvature when the curve is given in polar co-ordinates – p-r equation.

Book 2: Chapter 10: Sections 1.1 - 1.4, 2.1, 2.3 - 2.8

Unit V

13 hrs

Integral Calculus: Multiple integrals: Definition of the double integral – Evaluation of the double integral – Double integral in polar co-ordinates – Triple integrals. Beta and Gamma functions: Definitions – Convergence of $\Gamma(n)$ –Recurrence formula of Gamma functions – Properties of Beta functions – Relation between Beta and Gamma functions.

Book3: Chapter 5: Sections 1, 2.1, 2.2, 3.1, 3.2, 4 (Problems in 2.2, 3.1, 3.2 and 4) Chapter 7: Sections 2.1-2.3, 3, 4, 5

Books for study:

Unit	Name of the Book	Authors	Publisher	
I – III	Algebra Volume I	T. K. Manicavachagom	S.Viswanathan (printers and	
		Pillay, T. Natarajan and	publishers) Pvt., Ltd., Eleventh	
		K. S. Ganapathy,	Revised Edition, Reprint –2014.	
IV	Calculus(Major) Volume I	S.Narayanan and T.K.	S.Viswanathan (printers and	
	(Differential Calculus)	ManicavachagomPillay	publishers) Pvt., Ltd.,	
			Eighteenth Edition 2012.	
V	Calculus(Major) Volume II	S.Narayanan and T.K.	S.Viswanathan (printers and	
	(Integral Calculus)	ManicavachagomPillay	publishers) Pvt., Ltd., Eighteenth	
			Revised Edition 2012.	

13 hrs

13 hrs

Books for Reference:

S.No	Name of the Book	Authors	Publisher	
1	Mathematics for B.Sc Br-I,	P.Kandasamy,	S.Chand& Company Ltd, First	
	First Semester, Volume I	K.Thilagavathy	Edition, 2004.	
2	Differential Calculus	Shanthi Narayanan	Shayambal Charitable Trust, 1987.	
3	Integral Calculus	Shanthi Narayanan	S. Chand & Co, 1987.	

B.Sc Mathematics

Semester I

[For the students admitted from the academic year 2021 – 2022 onwards]

Course: Part III Core II Differential Equations and	Course Code: 121M02
Laplace Transforms	
Semester: I	No. of Credits: 4
No. of hours :75	C:T: 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial)

Course Objectives:

- > To introduce the concepts involved in solving first order differential equations.
- > To provide practice in solving second order differential equations.
- > To enable the students to solve simultaneous linear differential equations with constant coefficients.
- > To impart concepts regarding partial differential equations and their solutions.
- To introduce Laplace transform of functions and to equip the skill of solving second order differential equation with constant coefficients using Laplace transforms.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	solve first order and higher degree differential equations	А
CO2	solve the linear differential equations with constant and variable coefficients.	А
CO3	solve simultaneous differential equations.	А
CO4	formulate partial differential equations and solve first order partial differential equations.	А
CO5	solve differential equations using Laplace Transforms	А
A-Apply		

Syllabus:

Unit I							13 hrs
Differential equations of the first order:	Equations	of the first	st order,	but of	higher	degree:	Equations

solvable for dy/dx – Equations solvable for y – Equations solvable for x (particular cases of 5.2) – Clairaut's form - Extended form of Clairaut's Equations - Equations that do not contain x explicitly-Equations that do not contain y explicity – Equations homogeneous in x and y. Chapter 1: Sections 5.1 - 5.5, 6.1, 6.2, 7.1 - 7.3

Unit II

13 hrs

Linear Differential Equations with Constant Coefficients: Linear Differential Equations with Constant Coefficients- The operators D and D⁻¹- Particular Integral-Special methods of finding P.I-Linear differential equations with variable coefficients Chapter 2: Sections 1 to 4, 8

Unit III

13 hrs Simultaneous Differential Equations: Simultaneous equations of the first order and first degree -Solutions of $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$ Methods for solving $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$ Simultaneous linear differential equations with constant coefficients. Chapter 3: Sections 1 - 4, 6

Unit IV 13 hrs Partial Differential Equations: Derivation of Partial Differential Equations – Different integrals of Partial differential equations (definition only) - Standard types of first order equations -Lagrange's equation. Chapter 4: Sections 1 - 3, 5, 6 Unit V

13 hrs

The Laplace Transforms: Definition – Results from the definition – Laplace transforms of periodic functions – Some general Theorems – Evaluation of certain integrals using Laplace transforms - The inverse transforms - Solving second order differential equations with constant coefficients using Laplace transforms. Chapter 5: Sections 1 - 8

Book for study:

Unit	Name of the Book	Authors	Publisher
I-V	Calculus(Major)	S.Narayanan and	S.Viswanathan (printers and
	Volume III	T.K.Manicavachagom Pillay	publishers) Pvt., Ltd., 2014.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Advanced Engineering	Ervin Kreyszig	Wiley Eastern Ltd.,
	Mathematics		8 th edition, 2006
2	Differential Equations with	George F. Simmons	McGrawHill,Inc, 2 nd Edition
	applications and Historical Notes		1991.

B.Sc Mathematics Semester II

[For the students admitted from the academic year 2021 – 2022 onwards]

Course: Part III Core III Analytical Geometry of Three	Course Code: 221M03
Dimensions	
Semester: II	No. of Credits: 5
No. of hours :75	C:T: 65:10
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To understand the mathematical representation of the geometrical figures.
- > To give a training for visualizing ideas in three dimensions.
- To give an in-depth knowledge in three dimensional figures to understand the graphical concepts.
- > To make the students visualize the concepts using GeoGebra.

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	apply the concepts of direction ratios and direction cosines in	А
	planes and straight lines	
CO2	use the concepts of straight lines through planes.	А
CO3	discuss the various aspects of sphere and sections of a sphere.	U
CO4	identify various types of cone and obtain their equations.	U
CO5	use various types of conicoids and solve simple geometrical	А
	problems	
TT TT 1		

<u>U</u>-Understanding A-Apply

Syllabus:

Unit I	13 hrs
Planes: First degree equation-Equations of planes - General form of the equation of	a plane
passing through (x_1, y_1, z_1) – Equations of different planes – Intercept form of equat	ion of a
plane - coplanarity of three lines through a point - Loci related to x, y, z intercepts - H	Equation
$P + \lambda P' = 0$. Simple Geometric figures using GeoGebra.	
Book 1: Chapter 3: Sections 3.1 - 3.5	

Unit II

13 hrs

Straight Lines: Equations of a straight line – Equations of the line of intersection of two planes – Conditions for various situations of a line with reference to a plane – Plane through a given line – Coplanarity of two straight lines – Shortest distance between two skew lines – Equations of the common perpendicular – Feet of the common perpendicular. Simple Geometric figures using GeoGebra.

Book 1 : Chapter 4: Sections 4.1 - 4.3, 4.6, 4.9 - 4.11

Unit III 13 hrs Sphere: Equation of a sphere – Standard equation of a sphere – Sphere on a given diameter – Results based on properties of a sphere – Tangent plane to a sphere – Loci related to x, y, z intercepts (continued) – Equations of a circle – Centre and radius of a circle – Family of spheres through a circle – Touching spheres – Point of contact of touching spheres. Simple Geometric figures using GeoGebra.

Book 1 : Chapter 5: Sections 5.1 - 5.5.2

Unit IV

Cone and Cylinder: Cone – Right Circular cone – Equation of a general cone – Surface represented by a homogeneous equation – Equation obtained by homogenizing – Nature of a Quadric cone with vertex at the origin – Intersection of a cone by a plane through the vertex – General second degree cone. Simple Geometric figures using GeoGebra. Book 1 Chapter 6: Sections 6.1 - 6.5

Unit V

Conicoids: Nature of conicoids – Standard equation of central conicoids – Enveloping cone -Tangent plane – Condition for tangency – Director sphere and director plane - Normal to a Conicoid – Ruled surface - Executing simple geometrical problems using GeoGebra. Book 2: Chapter 6: Sections 6.9 - 6.12, Chapter 7: Sections 7.1 - 7.3

Books for study:

Unit	Name of the Book	Authors	Publisher
I-IV	Analytical Geometry (3–D)	P.Duraipandian, Kayalal	Muhil Publishers, 2009.
		Pachaiyappa	
V	Analytical Geometry (3–D)	P.Duraipandian, Laxmi	Emerald Publishers,
		Duraipandian & D.Muhilan	2009

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Analytical Geometry	T.K.Manickavasagam	Viswanathan
	(Three Dimensional)	Pillai, T.Natarajan	Publications, 2010
2	Analytical Geometry of Three	P. K.Jain	New international
	Dimensions	Khalil Ahmed	Publishers

13 hrs

Curriculum Design Sri G.V.G Visalakshi College for Women (Autonomous) Affiliated to Bharathiar University B.Sc Mathematics

Scheme of Examination – CBCS & OBE Pattern (For the students admitted during the academic year 2020-2021 only)

Sem	Course	Course Title	Fitle Ins. Examination			Credits		
	Code		Hrs/ Week	Dur.	CIA	ESE	Total	
				Hrs	Marks	Marks	Marks	
	119TA1/	Part I- Language I	6	3	25	75	100	4
	119MY1/							
	119HD1/							
	119FR1							
	119EN1	Part II – English I	6	3	25	75	100	4
т		Part III						
1	117M01	Core I Algebra and Calculus	5	3	25	75	100	4
	117M02	Core II Differential Equations	5	3	25	75	100	4
		and Laplace Transforms						
	117AM1	Allied I Physics I	6	3	25	50	75	3
	1101150							
	119VEC	Part IV – Value Education	2	2	50	-	50	2
	219TA2/	Part I- Language II	6	3	25	75	100	4
	219MY2/							
	219HD2/							
	219FR2							
	219EN2	Part II - English II	6	3	25	75	100	4
II		Part III						
	217M03	Core III Analytical Geometry	5	3	25	75	100	4
	217M04	Core IV Numerical Methods	5	3	25	75	100	4
	217AM2	Allied II Physics II	4	3	25	50	75	3
	217AMP	Allied Physics Practical	2	3	20	30	50	2
	219EVS	Part IV- Environmental Studies	2	2	50	-	50	2
	320TA3/	Part I – Language III	6	3	25	75	100	4
	319MY3/							
	319HD3/							
	319FR3							
	319EN3	Part II -English III	6	3	25	75	100	4
TTT		Part III						
111	317M05	Core V Vector Calculus and Fourier Series	3	3	25	50	75	3
	317M06	Core VI Statics	4	3	25	75	100	4
	319AM3/	Allied III Principles of	6	3	25	75/50/75	100/75/	4/3/4
	320AM4/	Accountancy/ Chemistry I					100	
	320AM5	/Mathematical Statistics I			50		100	
	317NMC	Part IV - NME – Basic	2	2	50	-	50	2

		Mathematics for Competitive						
	2201/151	Dent IV Chill Enhangement	2	2	75		75	2
	32010151	Part IV-Skin Ennancement	5	5	15	-	13	3
		Course I Professional						
		English for Mathematics						
	420TA4/	Part I – Language IV	6	3	25	75	100	4
	419MY4/							
	419HD4/							
	419FR4							
	419EN4	Part II- English IV	6	3	25	75	100	4
		Part III						
	417M07	Core VII Discrete Mathematics	3	3	25	50	75	3
	417M08	Core VIII Dynamics	4	3	25	75	100	4
		Allied IV	6	3	25	50/75/75	75/100/	3/4/4
	420AM6/	Chemistry II / Statistics for	Ŭ	5	25	50/15/15	100	5/1/1
	420AM7/	Mathematics / Mathematical					100	
IV	420AM17/	Statistics II						
	420A110	Statistics II						
	420AMP	Chemistry Practical	2	3	20	30	50	2
	417NGA	Part IV-General Awareness and	2	2	100	-	100	2
		Information Security						
		5						
	420MS2	Part IV- Skill Enhancement	3	3	75	-	75	3
		Course II Graph Theory	-	-				-
	417MA1/	Advanced Learners	-	3	-	100	100	4*
	417MA2	Courses – I Combinatorics /		-				
	11,10112	Statistical Quality Control						
	5151600		-	2	25		100	4
	517M09	Core IX Real Analysis I	6	3	25	75	100	4
	517M10	Core X Complex Analysis I	5	3	25	75	100	4
	517M11	Core XI Abstract Algebra	5	3	25	75	100	4
V	517M12	Core XII Group Project	5	-	50	50	100	4
	518ME1/	Elective I: Programming in C(T	6	3	25	75	100	4
	517ME2	& P) / Number Theory						
	520MS3	Part IV - Skill Enhancement	3	3	75	-	75	3
		Course III - Sequences and						
		Series						
		Part III						
	617M13	Core XIII Real Analysis II	5	3	25	75	100	4
	617M14	Core XIV Complex Analysis II	5	3	25	75	100	4
	617M15	Core XV Linear Algebra	5	3	25	75	100	4
	617ME3/	Elective II: Operations	6	3	25	75	100	4
VI	01/ME4	Cryptography						
	617ME5/	Elective III: Fuzzy and	6	3	25	75	100	Δ
	617ME6	Intuitionistic Fuzzy Theory/	0	5	25	15	100	+
	51,11110	Astronomy						
t	620MS4	Part IV- Skill Enhancement	3	-	75	-	75	3

	Course IV Internship / Summer Training/Short Term Course						
617EX1/	Part V- Extension activity	-	-	50	-	50	2
617EX2/	NCC/NSS/YRC/RRC/ Games						
617EX3/							
617EX4/							
617EX5							
617MA3/	Advanced Learners Course –	-	3	-	100	100	4*
617MA4	II Mathematics in						
	Insurance/Introduction to						
	wavelet theory						

Total: 3550 140

Starred credits are treated as additional credits (Optional)

Employability Courses

B.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core V Vector Calculus and Fourier	Course Code: 317M05
Series	
Semester: III	No. of Credits: 3
No. of hours :45 (Total hours)	C:T: 39: 6
CIA Max. Marks: 25	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial)

Course Objectives:

The objectives of this course are

- ➤ to introduce various operations involving vectors.
- > To familiarize the line, surface and volume integrals.
- ➤ to introduce the Fourier series and its various forms.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's Taxonomy
		level
CO1	know about the concepts of Gradient, Divergence and Curl.	R
CO2	relate the identities involving the operators.	R
CO3	evaluate Line integrals and surface integrals using Gauss	Α
	divergence theorem.	
CO4	evaluate surface and volume integrals using Stoke's and	Α
	Green's theorem.	
CO5	obtain Fourier series for various functions.	U
CO6	convert any mathematical function to trigonometric function.	U

Remembrance U – Understanding A-Apply

Syllabus:

U	Unit I 8	hrs
	Gradient: Scalar and Vector point functions - Level Surfaces - Directional derivative of	of a
	scalar point function - Gradient of a scalar point function-Gradient of sum and product	t of
	functions – Gradient of f(r).	
	Book 1: Chapter 2: Sections 2.1 - 2.6	

Unit II

Divergence & curl: Divergence and curl of a vector point function – Solenoidal and rotational vectors – Theorems on divergence and curl – Laplacian operator – Divergence and curl of a gradient – Divergence and curl of a curl – Divergence and curl of f(r)r – Scalar

potential. Book 1: Chapter 3: Sections 3.1 - 3.5

Unit III

Integral Theorems: Integral Theorems - Green's theorem in the plane - Gauss divergence theorem – Stoke's theorem.

Book 1: Chapter 6: Sections 6.1 - 6.4

Unit IV

Fourier series: Fourier series – Even and odd functions. Book 2: Chapter 1: Pages 96 - 135

Unit V

Fourier series: Half - range series - Half - range sine series - Half - range cosine series, Change of interval.

Book 2: Chapter 1: Pages 135 - 154

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-III	Vector Analysis	P.Duraipandian, Kayalal	Muhil Publishers, Revised
		Pachaiyappa	Edition 2009
IV,V	Mathematics for B.Sc	P.Kandasamy,	S.Chand & Company
	Branch–I, Volume – IV	K.Thilagavathi	Limited, First Edition 2005

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Vector Analysis	Dipak Chatterjee	PHI Learning Private Limited,
			Second Edition, 2009
2	Calculus(Major)	S.Narayanan and	S.Viswanathan (printers and
	Volume III	T.K. Manicavachagom Pillay	publishers) Pvt., Ltd., 2012.

B.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core VI Statics	Course Code: 317M06
Semester: II	No. of Credits: 4
No. of hours :60 (Total hours)	C:T: 52: 8
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

Objectives of this course are

- > to provide a strong foundation in understanding the concepts of mechanics.
- ➤ to know about equilibrium of a particle.
- > to impart knowledge about the forces acting on a particle and rigid body.

8 hrs

7 hrs

 \succ to study about couples and moments of couples and results related to them.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	find the resultant of two or more forces acting on a particle	Α
CO2	understand the concepts of equilibrium of a particle under three	U
	or more forces.	
CO3	compute the moment of a force and a couple.	U
CO4	obtain the equation of the line of action of the resultant.	Α
CO5	comprehend the effect of friction on planar motion.	R
CO6	identify the centre of mass for different geometrical figures.	R

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I

11 hrs

Force: Newton's laws of motion – Forces – Resultant of two forces on a particle – Resultant of three forces related to a triangle acting at a point – Resultant of several forces acting on a particle. **Equilibrium of a particle**: Equilibrium of a particle – Equilibrium of a particle under three forces – Equilibrium of a particle under several forces.

Chapter 2: Sections 2.1(2.1.1) - 2.2, Chapter 3: Section 3.1

Unit II10 hrsForces on a rigid body: Moment of a force – Moment of a force about a line – Scalar
moment – Equivalent (or equipolent) systems of forces – Parallel forces – Point of
application of resultant of many parallel forces – Varignon's theorem – Parallel forces at the
vertices of a triangle – Forces along the sides of a triangle.
Chapter 4: Sections 4.1, 4.3 - 4.5

Unit III

11 hrs

Forces on a rigid body: Couples – Moment of a couple – Arm and axis of a couple – Resultant of several coplanar forces – Moment of a certain couple as an area – Couples in a parallel planes – Resultant of a couple and a force – Equation of the line of action of the resultant – Sum of the moments about an arbitrary point. Chapter 4: Sections 4.6 - 4.8

Unit IV

Force: Newton's laws of motion: Types of forces. A specific reduction of forces: Problems involving frictional forces.

Chapter 2: Section 2.1(2.1.2), Chapter 5: Section 5.2 (Excluding Section 5.2.1)

Unit V

Centre of Mass: Centre of mass – Centre of gravity – Finding mass centre – Finding mass centre (not using integration) – Finding mass centre using integration – Mass centre of a nonhomogeneous solid.

Chapter 6: Section 6.1(6.1.1), 6.2(6.2.1 - 6.2.3)

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Mechanics	P. Duraipandian, Laxmi	S. Chand & Company Ltd.,
		Duraipandian, Muthamizh	Reprint 2016.
		Jayapragasam	

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Statics	Dr.M.K.Venkataraman	Agasthiar book deport, Fifth
			edition, 1984.
2	Statics	K.ViswanathaNaik, M.S.Kasi	Emerald publishers, 2001.

B.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part IV – Non-Major Elective Basic Mathematics	Course Code: 317NMC
for Competitive Examinations	
Semester: III	No. of Credits: 2
No. of hours : 30 (Total hours)	C:T: 26: 4
CIA Max. Marks: 50	ESE Max. Marks: -

(C: Contact hours, T:Tutorial)

Course Objectives:

Objectives of this course are

- to enhance quantitative aptitude required for competitive examinations like Bank P.O., and Railways etc.
- > to familiarize with different types of tests conducted by various examining bodies.
- to improve the numerical aptitude in mathematics and to increase the speed through regular practice.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	simplify fractions easily.	R
CO2	acquire enough knowledge to solve problems on ages and profit	Α
	and loss.	
CO3	solve problems in ratio and proportion and partnership.	Α

CO4	gain knowledge in solving problems involving time and other factors.	R
CO5	calculate simple interest, compound interest and true discount.	Α
CO6	improve their numerical aptitude	Α
D D		

<u>**R-Remembrance U – Understanding A-Apply</u>**</u>

Syllabus:

Unit I

Decimal fractions – Simplification – Number series.	
Chapters: 3, 4, 39	

Unit II

Problems on Ages – Percentage – Profit and loss. Chapters: 8, 10, 11

Unit III

Ratio and proportion – Partnership Chapters: 12,13

Unit IV

Time and work – Time and distance – Problems on trains. Chapters: 15, 17, 18

Unit V

Simple interest – Compound interest – True discount. Chapters: 21, 22, 25

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Objective Arithmetic	R.S. Aggarwal	S.Chand & Company LTD, Reprint 2009.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Quick Arithmetic	Shish Aggarwal	Sultan Chand & Company Ltd, Second
			edition 2007.
2	Quantitative Aptitude for	Abhijit Guha	Tata McGraw Hill Publishing Company
	Competitive Examinations		Ltd, Fifth edition, 2014.

5 hrs

6 hrs

5 hrs

5 hrs

B.Sc Mathematics Semester IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core VII Discrete Mathematics	Course Code: 417M07
Semester: IV	No. of Credits: 3
No. of hours :45 (Total hours)	C:T: 39:6
CIA Max. Marks: 25	ESE Max. Marks: 50

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- to develop the ability to perceive, formulate and to solve mathematical problems related to finite systems in engineering and computer science.
- to gain confidence in applying the ideas to solve practical problems in the areas like switching theory, coding theory, artificial intelligence etc.,
- ➤ to develop appropriate interpretation of finite Mathematical systems.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	know various connectives in logic.	R
CO2	construct truth table for statement formulae	A
CO3	convert the statement formulae to its equivalent forms.	U
CO4	characterize posets, semigroups and monoids.	A
CO5	examine the concepts of lattices and Boolean algebra.	U
CO6	minimize Boolean functions	A

<u>R-Remembrance U – Understanding A-Apply</u>

Syllabus:

Unit I

Mathematical logic:Introduction – Statements and Notation.Connectives: Negation –Conjunction – Disjunction – Statement formulas and truth tables – Conditional and
Biconditional – Well-formed Formulas – Tautologies – Equivalence of formulas – Duality
law – Tautological Implications – Formulas with Distinct Truth Tables.
Chapter 1: Sections 1.1, 1.2(1.2.1-1.2.4, 1.2.6 - 1.2.12)

Unit II 8 hrs
Mathematical logic: Normal forms: Disjunctive normal forms – Conjunctive normal forms –
Principal disjunctive normal forms - Principal conjunctive normal forms - Ordering and
uniqueness of normal forms. Set theory: Relations and ordering: Partial ordering – Partially
ordered set: Representation and Associated Terminology.
Chapter 1: Sections 1.3(1.3.1 - 1.3.5), Chapter 2: Sections 2.3(2.3.8, 2.3.9)

Algebraic Structures: Semigroups and Monoids: Definitions and Examples Homomorphism of Semigroups and Monoids – Subsemigroups and Submonoids. Chapter 3 : Section 3.2

Unit IV

8 hrs

Lattices and Boolean Algebra: Introduction: Lattices as partially ordered sets: Definition and Examples – Some properties of lattices – Lattices as Algebraic systems – Sublattices, Direct Product, and Homomorphism – Some Special Lattices. Boolean Algebra: Definition and Examples.

Chapter 4: Sections 4.1, 4.2(4.2.1)

Unit V

8 hrs

Lattices and Boolean Algebra: Boolean Functions: Boolean Forms and Free Boolean Algebras – Values of Boolean Expressions and Boolean Functions. Representation and Minimization of Boolean functions: Representation of Boolean functions. Chapter 4: Sections 4.3, 4.4(4.4.1)

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Discrete Mathematical	J.P. Tremblay and	Tata McGraw-Hill Edition –
	Structures with Applications to	R. Manohar	1997, 47 th Reprint 2015
	Computer Science		

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Discrete Mathematics with Graph	T.Veerarajan	Tata McGraw–Hill, New
	Theory and Combinatorics		Delhi, Fifth Reprint, 2008.
2	Discrete Mathematics	N.Ch.S.N.Iyengar,	Vikas Publishing House
		V.M.Chandrasekaran,	Pvt Ltd, Second Reprint,
		K.A.Venkatesh,	2008
		P.S. Arunachalam	
3	Discrete Mathematics (For	Prof. V.Sundaresan,	A.R. Publications (New
	B.E. Computer Science and	K.S.Ganapathy	Revised Edition, June
	Engineering)	Subramanian, K.Ganesan	2008)
4	Discrete Mathematical	Bernard Kolman, Robert	Prentice Hall of India Pvt
	Structures	C.Busby and Sharon Ross	Ltd, Sixth Printing (Third
			Edition), 1998

B.Sc Mathematics Semester IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core VIII Dynamics	Course Code: 417M08
Semester: IV	No. of Credits: 4
No. of hours :60 (Total hours)	C:T: 52:8
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

Objectives of this course are

- ➢ to visualize the physical phenomena in mathematical terms.
- to have a deep knowledge about the motion of particles under the influence of various forces.
- ➤ to impart the concept of impact of collision of bodies and solve problems based on it.
- ➤ to provide a good foundation for the students to take up any advanced course in mechanics and all related fields

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	Interpret and illustrate the basic concepts in Kinematics	U
CO2	gain knowledge about simple harmonic motion and its application	Α
	in Physical situation.	
CO3	recall various properties of a projectile	R
CO4	describe and evaluate direct and oblique impact of bodies.	U
CO5	describe the properties of the central orbits.	R
CO6	analyze the effects of forces on material bodies	Α
D D		

R-Remembrance U – Understanding A-Apply

Syllabus:

 Unit I
 11 hrs

 Kinematics: Basic units – Velocity – Velocity of particle describing a circle – Resultant velocity – Acceleration – Rectilinear motion – Rectilinear motion with a constant acceleration – Coplanar motion – Velocity and acceleration in a coplanar motion – Angular velocity – Relative angular velocity.

Chapter 1: Sections 1.1 - 1.4 (excluding Section 1.2.3)

Unit II

10 hrs

Rectilinear motion under varying force: Simple harmonic motion – Projection of a particle having a uniform circular motion – Composition of two simple harmonic motions of same period – S.H.M along a horizontal line – S.H.M along a vertical line. Chapter 12: Sections 12.1 - 12.3

Unit III

Projectiles: Forces on a projectile – Displacement as a combination of vertical and horizontal displacements – Nature of trajectory – Results pertaining to the motion of a projectile – Maximum horizontal range for a given velocity – Two trajectories with a given speed and range – Projectile projected horizontally – Projectile projected on an inclined plane – Maximum range on an inclined plane.

Chapter 13: Sections 13.1, 13.2

Unit IV

10 hrs

Impact: Conservation of linear momentum(principle only) – Impact of spheres – Laws of impact – Impact of two smooth spheres – Direct impact of two smooth spheres – Impact of a smooth sphere on a plane – Direct impact of a smooth sphere on a plane – Oblique impact of a smooth sphere on a plane – Oblique impact of two smooth spheres. Chapter 14: Sections 14.2 - 14.5

Unit V

Central orbits: General orbits – Central orbit – Differential equation of a central orbit – Laws of a central force – Methods to find the central orbits – Conic as a central orbit – Kepler's Laws of planetary motion.

Chapter 16: Sections 16.1 - 16.3

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Mechanics	P. Duraipandian,	S. Chand & Company Ltd., Reprint
		Laxmi Duraipandian,	2016.
		Muthamizh Jayapragasam	

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Dynamics	A.V. Dharmapadam	S. Viswanathan Pvt Ltd., 2006
2	Dynamics	S. Narayanan	S. Chand & Company Ltd., 16 th revised
			edition 1986
3	Dynamics	Dr. M.K. Venkataraman	Agasthiar publications, 12 th edition 2006

Entrepreneurial Courses

B.Com / B.Com(CA) / BCom(ecom)

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Allied III – Mathematics	Course Code: 317AB3/317AR3/317AN3
Semester: III	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: 75:15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

11 hrs

Course Objectives:

The objectives of this course are

- ➤ to provide a knowledge about mathematics in finance.
- to improve the problem solving ability
- to give practical training in converting a managerial decision making problem to linear programming problem
- > to gain knowledge on techniques for solving linear programming problem.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	calculate simple, compound interest, rate of interest etc.	Α
CO2	perform various operations on matrices.	U
CO3	describe the concepts in Linear Programming Problem.	R
CO4	solve the linear programming problem using simplex method.	Α
CO5	minimize the cost in transportation and assignment problems.	U
CO6	interpret the concept of game theory.	Α

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I:

Mathematics of Finance: Basic Concepts – Simple Interest and Compound Interest – Symbols Used – Simple Interest – Formulae and Problems – Compound Interest – Formulae and Problems – Effective Rate and Nominal Rate of Interest – Depreciation – Annuities – Discounting.

Book 1: Chapter 2: Sections 1 - 7, 10

Unit II

Matrices, Determinants, Input - Output Analysis: Definition of a Matrix – Importance

 Notation – Order of a Matrix – Types of Matrices – Matrix operations-I – A System of Linear Equations. Determinants – Matrix operations-II – Rank – Consistency of a System of Simultaneous Linear Equations – Miscellaneous Illustrations.

Book 1: Chapter 4: Sections 1 - 12

Unit III

Linear Programming: Linear Programming Problem – Graphical Method – Simplex Method.

Book 1: Chapter 9 (Related to the above topics)

Unit IV

16 hrs

15 hrs

16 hrs

16 hrs

Transportation Problem: Introduction – LP formulation of the transportation problem – Existence of Solution in T.P – Duality in transportation problem – The transportation table –

Loops in transportation tables – Triangular basis in a T.P – Solution of a transportation problem – Finding an initial basic feasible solution – Test for optimality – Economic Interpretation of u_j 's and v_j 's – Degeneracy in transportation problem – Transportation algorithm [MODI method]. Assignment Problem: Introduction – Mathematical formulation of the problem – Solution Methods of Assignment Problem.

Book 2: Chapter 10: Sections 10.1 – 10.13, Chapter 11: Sections 11.1 – 11.3

Unit V 15 hrs
Games and Strategies: Introduction - Two-person zero-sum games - Some basic terms -
The Maximin - Minimax principle - Games without saddle points - Mixed strategies -
Graphic solution of 2 x n and m x 2 games.

Book 2 : Chapter 17: Sections 17.1 - 17.6

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I ,II & III	Business Mathematics	P.A.Navnitham	Jai Publishers, Latest Edition,
	and Statistics		May 2014.
IV & V	Operations Research	Kanti Swarup,	Sultan Chand & Sons,
		P.K Gupta, Man Mohan	NewDelhi, Fifteenth Edition,
			Reprint 2010

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	An Introduction to Business	V.Sundaresan,	S.Chand & Company Ltd.,
	Mathematics	S.D.Jayaseelan	New Delhi, Reprinted 1983
2	Mathematics for CA foundation	B.M.Aggarwal	Kitab Mahal Agencies,
			Allahabad, Fourth Edition
			1998 – 1999
3	Operations Research: Theory and	J.K.Sharma	MacMillan India Ltd, Second
	Applications		Edition, 2003

Skill Development Courses

B.Sc Mathematics Semester III

(For the students admitted during the academic year 2020 – 2021 only)

Course: Part III Allied III Mathematical	Course Code: 320AM5
Statistics I	
Semester: III	No. of Credits: 4
No. of hours :90	C:T:- 78:12
CIA Max. Marks: 25	ESE Max. Marks: 75

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To provide knowledge about random variables and their different distributions.
- > To comprehend the characteristics of distributions.
- > To create awareness of the sampling distributions and their applications.

Course Outcomes: On completion of the course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	calculate the expected values and probabilities associated with the distributions of random variables	U
CO2	evaluate expectation and variance.	А
CO3	identify the relationship between attributes	А
CO4	describe the theoretical distributions.	U
CO5	apply the special continuous probability distributions in real world problems	А

<u>U</u>–Understanding A-Apply

Syllabus:

Unit I: 16 hrs Theory of probability: Random variables and Distribution functions: Introduction – Distribution function. Discrete Random Variable- Continuous Random Variable- Two- Dimensional random variable- Stochastic Independence.

Chapter 5 Sections 5.1, 5.2, 5.3, 5.3.1, 5.3.2 5.4:5.4.1, 5.4.2, 5.4.3, 5.5: 5.5.1 -5.5.6.

Unit II

15 hrs

Mathematical Expectations: Mathematical Expectations of random variable- Properties of Expectation - Properties of Variance - Covariance – Cauchy-Schwartz Inequality- Chebychev's Inequality. Chapter 6 Sections 6.1-6.7.

Chapter 7 Sections 7.5.

Unit III

15 hrs

Correlation: Introduction – Scatter Diagram- Karl Pearson"s coefficient of Correlation- Probable Error of correlation coefficient–Rank Correlation. Regression: Introduction – Linear Regression – Regression Coefficients- Properties- Angle between two lines of regression.

Chapter 10 Sections 10.1-10.4, 10.4.1,10.4.2 and 10.7:10.7.1-10.7.3.

Chapter 11 Sections 11.1, 11.2, 11.2.1, 11.2.2, 11.2.3.

Unit IV

16 hrs

Theoretical distributions: Binomial & Poisson Distributions - Moments – Recurrence Relation for Moments – Mean Deviation about Mean, Mode, Recurrence relation for probabilities of Binomial distribution, Fitting of curve, Moment Generating Function. Chapter 8 Sections 8.4: 8.4.1-8.4.8, 8.4.12, 8.5: 8.5.1-8.5.6, 8.5.10 Unit V

16 hrs

Special Continuous Probability Distributions: Normal Distributions- Moments – Recurrence Relation for Moments – Mean Deviation about Mean, Mode, Recurrence relation for probabilities of Normal distribution, Fitting of curve, Moment Generating Function. Chapter 9 Sections 9.1, 9.2: 9.2.1-9.2.5, 9.2.7, 9.2.10, 9.3:9.3.1,9.3.2.

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Fundamentals of	S.C.Gupta, V.K.Kapoor	Sultan Chand and Sons, New
	Mathematical		Delhi-Eleventh thoroughly
	Statistics		revised edition (2002), Reprint
			2016.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Introduction to	Robert V.Hogg & Allen T.	Pearson Education, Fifth Edition.
	Mathematical	Craig	
	statistics		
2.	Theory and Problems	Murray R.Spiegel, Larry	Third Edition, Tata McGraw Hill
	of Statistics	J.Stephens	Publishing Company Ltd, 2009.
3.	Mathematical	P.R. Vittal	Margham Publications, First
	Statistics		Edition, 2010

B.Sc Mathematics Semester III

(For the students admitted during the academic year 2020 – 2021 only)

Course: Part IV - Skill Enhancement Course I	Course Code: 320MS1
Professional English for Mathematics	
Semester: III	No. of Credits: 3
No. of hours :45	C:T: 39:6
CIA Max. Marks: 75	ESE Max. Marks: -

(C:Contact hours, T:Tutorial)

Course objective: This course aims

- To develop their competence in the use of English with particular reference to the workplace situation.
- To enhance the creativity of the students, which will enable them to think of innovative ways to solve issues in the workplace.
- > To develop their competence and competitiveness and thereby improve heir employability skills.
- > To help students with a research bent of mind to develop their skills in writing reports and research proposals.

Course	Outcomes:	On com	pletion	of the	course	the	student	will	be	able	to
Course	o accontes.	011 00111	p1001011	01 1110	000100		beautit		00	4010	

CO	Statement	Bloom's
		Taxonomy level
CO1	use the mathematical term at the appropriate place	U
CO2	face interviews/present papers with more confidence	U
CO3	write research articles	А
CO4	create mathematical content for social media	А
CO5	create blogspots on important mathematical topics	А

<u>U-Understanding A-Apply</u>

Syllabus:

Unit I COMMUNICATION

Listening: Listening to audio text and answering questions - Listening to Instructions Speaking: Pair work and small group work. Reading: Comprehension passages –Differentiate between facts and opinion Writing: Developing a story with pictures. Vocabulary: Register specific - Incorporated into the LSRW tasks

Unit II DESCRIPTION

Listening: Listening to process description.-Drawing a flow chart. Speaking: Role play (formal context) Reading: Skimming/Scanning- Reading passages on products, equipment and gadgets. Writing: Process Description–Compare and Contrast Paragraph-Sentence Definition and Extended definition- Free Writing. Vocabulary: Register specific - Incorporated into the LSRW tasks.

Unit III NEGOTIATION STRATEGIES

Listening: Listening to interviews of specialists / Inventors in fields (Subject specific) Speaking: Brainstorming. (Mind mapping). Small group discussions (Subject- Specific) Reading: Longer Reading text. Writing: Essay Writing (250 words) Vocabulary: Register specific - Incorporated into the LSRW tasks

Unit IV PRESENTATION SKILLS

Listening: Listening to lectures. Speaking: Short talks. Reading: Reading Comprehension passages Writing: Writing Recommendations Interpreting Visuals inputs Vocabulary: Register specific - Incorporated into the LSRW tasks

Unit V CRITICAL THINKING SKILLS

Listening: Listening comprehension- Listening for information. Speaking: Making presentations (with PPT- practice). Reading: Comprehension passages –Note making. Comprehension: Motivational article on Professional Competence, Professional Ethics and Life Skills Writing: Problem and Solution essay– Creative writing –Summary writing Vocabulary: Register specific - Incorporated into the LSRW tasks

[

8 hrs

8 hrs

8 hrs

7 hrs

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	A primer of	Steven G.Krantz	Universities Press 1997
	Mathematical Writing		
2.	Write Mathematics	L.Radhakrishna	Narosa Publishing House Pvt.Ltd
	Right		2013
3.	History of Modern	David Eugene Smith	MJP Publishers 2008
	Mathematics		

B.Sc. Mathematics

Semester IV

(For the students admitted during the academic year 2020 – 2021 only)

Course: Part III – Allied IV Mathematical	Course Code: 420AM8
Statistics-II	
Semester: IV	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: 78:12
CIA Max. Marks: 25	ESE Max. Marks: 75

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To provide knowledge about the parametric and non-parametric testing techniques.
- > To utilize the probability distributions to perform Statistical inference.
- ➢ To take up research.

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	apply and compute maximum likelihood estimation.	А
CO2	Explain all aspects of parametric testing techniques including	Δ
	single and multi-sample tests for mean and proportion.	1 1
CO3	Determine sampling of attributes	А
CO4	describe Normal, uniform, Gamma, beta, t ,F and chi-square	IT
	distributions.	U
CO5	apply the special continuous probability distributions in real	Δ
	world problems	

Syllabus:

Unit I:

Large sample Theory: Procedure for testing of hypothesis- Test of significance for large samples- Sampling of Attributes - Test of significance for a single proportion-Test of significance for difference of proportions- Sampling of Variables- Test of significance for significance for significance for difference of mean. Chapter 14: Sections 14.5, 14.6, 14.7, 14.8: 14.8.3, 14.8.4

Unit II

Theory of Estimation: Introduction - Characteristics of Estimators -Properties- Cramer Rao Inequality - Rao Blackwell Theorem – Method of Estimation -Method of maximum likelihood-Method of Minimum variance- Confidence Interval & Confidence limits. Chapter 17: Sections 17.2, 17.3

Unit III

Testing of Hypothesis: Statistical hypothesis- Null and alternate hypothesis –Critical region-Two types of errors- Level of Significance-Power of a test – Steps in solving Testing of hypothesis problems- Most powerful test- Uniformly Most Powerful Test –Neyman and Pearson Lemma.

Chapter 18: Sections 18.1, 18.2:18.2.1-18.2.7, 18.3, 18.4: 18.4.1, 18.4.2, 18.5:18.5.1, 18.5.2.

Unit IV

 χ^2 Exact sampling distribution: Introduction χ^2 , t, F, Z Distributions - Derivations - Applications- Relation between t and F, F and χ^2 , Fisher's Z-distribution. Chapter16: Sections 16.1,16.2,16.3,16.5,16.7,16.8,16.9.

Unit V 15 hrs Analysis of variance: F- Test- Application of F –Test – Assumptions and Techniques in Analysis of Variance- One and Two way classification Model – Experimental Designs – Introduction -Randomized Block Design - Latin Squares- Randomized block Vs Latin Squares- Latin Cubes. Chapter: 25

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I -IV	Fundamentals of	S.C.Gupta, V.K.Kapoor	Sultan Chand & sons, New
	Mathematical		Delhi.11th Thoroughly Revised
	Statistics.		edition, Reprint 2016 (for units
			1,2,3)
V	Statistical methods	S.P.Gupta	Sultan Chand & Sons, New
			Delhi. 43 rd editions, 2014.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Introduction to	Robert V.Hogg, Joseph,	7th Edition Pearson India Ltd,
	Mathematical	Mckon, AllenT.Craig	2009.
	Statistics		
2.	Introductory	Sheldon M Ross	Introductory Statistics (3rd
	Statistics		Edition) Elsevier, 2012

15 hrs

16 hrs

B.Sc Mathematics Semester IV

(For the students admitted during the academic year 2020 – 2021 only)

Course: Part IV - Skill Enhancement Course II Graph	Course Code: 420MS2
Theory	
Semester: IV	No. of Credits: 3
No. of hours :45	C:T: 39:6
CIA Max. Marks: 75	ESE Max. Marks: -

(C: Contact hours, T: Tutorial)

Course Objectives:

- > To enable the students to learn the basic concepts of graph theory.
- > To introduce various types of graphs.
- > To have a deep understanding of digraphs and their properties.
- > To be familiar with matrix representation of graphs and digraphs.

Course Outcomes: On completion of the course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	find the degree sequence, connectivity and isomorphism of graphs.	U
CO2	identify various types of graphs	U
CO3	identify and differentiate Hamiltonian and Eulerian graphs.	А
CO4	explain various properties of digraphs	U
CO5	write adjacency and incidence matrix of a given labeled	А
	graph or digraph and vice versa.	

U-Understanding A-Apply

Syllabus:

Unit I	8 hrs
Graphs: Graphs and Sub graphs – Vertex Degrees – Paths and Cycles. Chapter 2: Sections 2.1 - 2.3	

Unit II

Graphs: Regular and bipartite graphs. Eulerian and Hamiltonian Graphs: Exploring and Travelling. Chapter 2: Sections 2.4, Chapter 3: Sections 3.1

Unit III

Eulerian and Hamiltonian Graphs: Eulerian Graphs – Hamiltonian Graphs. Chapter 3: Sections 3.2 and 3.3 8 hrs

Unit IV

Digraphs: Digraphs and Sub digraphs – Vertex Degrees – Paths and Cycles. Chapter 4: Sections 4.1 - 4.3

Unit V

Matrix Representations: Adjacency Matrices – Walks in graphs and Digraphs – Incidence Matrices.

Chapter 5: Sections 5.1- 5.3

Note: Proof of the theorems are not included

Book for study:

Unit	Name of the Book	Authors	Publisher
I-V	Graphs and Applications – An	Joan M.Aldous and	Springer - Second
	Introductory Approach	Robin J.Wilson	Indian Reprint 2014.

Books for Reference:

S.No.	Name of the Book	Authors	Publisher
1	Graph Theory	Frank Harary	Narosa Publishing House, New
			Delhi, Tenth Reprint 2001.
2	A First Look at Graph Theory	John Clark, Derek	Allied Publishers Ltd, Reprint
		Allan Holton	1995.
3	Graph Theory with	Narsingh Deo	Prentice – Hall of India Private
	Applications to Engineering		Ltd, New Delhi 2005.
	and Computer Science		
4	Graphs, Networks and	Dieter Jungnickel	Springer – Verlag Berlin
	Algorithms		Heidelberg, 2005.

B.Sc. Physics and Chemistry

Semester III

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Allied III Mathematics I	Course Code: 317AP3/317AC3
Semester: III	No. of Credits: 4
No. of hours :90 (Total hours)	C:T : 75:15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- to become familiar with applications of Binominal, Exponential and Logarithmic expansions for finding the sum of series.
- to acquire knowledge on solving reciprocal equations and finding the roots by Newton Raphson method.
- ➤ to be familiar with the knowledge of eigen values and eigen vectors.
- \succ to enable the students to understand the concepts of interpolation.

7 hrs

➢ to learn about trigonometric concepts

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	find the sum of binomial, exponential and logarithmic series	U
CO2	understand the basic concepts of theory of equations.	U
CO3	gain knowledge of real life applications of matrices.	R
CO4	understand how interpolation technique is applied in real life	Α
CO5	know about the properties of trigonometric functions and their applications	R
CO6	explain the fundamentals of the mathematics and apply while creating innovations	Α

<u>**R-Remembrance U – Understanding A-Apply</u>**</u>

Syllabus:

U	nit	I:
<u> </u>		

Algebra:

The Binomial Theorem: Theorem – Some Standard Expansions – The General Term – Summation of series. **Exponential theorem** – The number e – The Exponential Theorem (without Proof) – Some useful results – Summation of series. **The Logarithmic series**: Theorem–Some Standard Results – Summation of series

(Approximation Problems are Excluded)

Chapters II, III and IV.

Unit II

16 hrs

Theory of Equations: To diminish the roots of an equation by h. Reciprocal equations. Newton's Method of Successive Approximations.

Chapters I(Ex - 3), II and III

Unit III

15 hrs

Matrices:

Fundamental Concepts :Introduction-Special types of matrices-Matrices associated with a given matrix-operations-Matrix multiplication-Properties of matrix multiplication-Associated matrices-Adjoint of a square matrix-Inverse of a matrix. **Characteristic Roots and Characteristic Vectors**: Linear transformation-The characteristics equation of a transformation-Properties of the eigen vectors-Cayley Hamilton theorem. Chapters I and IV

Unit IV

16 hrs

Finite Differences:

Finite Differences. Interpolation: Newton's Forward, Backward Interpolation.

Unit V

Trigonometry:

Expansion in Series. Exponential Series and Hyperbolic functions.

Chapters I and II

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition	
I-V	Allied Mathematics	P.Kandasamy,	S. Chand and	Company Limited, First
	Volume I	K.Thilagavathy	Edition, Reprint 2014.	

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	AText book of	R.Balakrishnan and	Vikas Publishing House, Pvt Ltd.
	Modern Algebra	M.Ramabhadran	3 rd Edition 1979
2.	Numerical	P.Kandasamy, K.Thilagavathy	S.Chand and company Limited
	Methods	& K. Gunavathi	2010.

B.Sc. Physics and Chemistry

Semester IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Allied IV Mathematics II	Course Code: 417AP4/417AC4
Semester: IV	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: 75:15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- ➤ to analyze the various properties of curves using methods of calculus.
- ➤ to introduce different methods of solving ordinary and partial differential equations.
- to expose to the students the Laplace Transforms, its properties and its applications in physical and chemical sciences.
- ➤ to introduce the Fourier series and its various forms.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	understand the basic concepts of calculus.	U
CO2	find curvature of curves and distinguish the significance of curvature representation in different co-ordinate systems.	U

CO3	find the solution of higher order differential equations.	Α
CO4	know about various methods of solving Partial differential equations.	R
CO5	acquire knowledge about the Laplace transforms and its inverse.	R
CO6	obtain the Fourier series for various function.	А

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I:

Calculus and Differential Geometry:

Curvature: Some important results – Radius of curvature in Cartesians – Centre and circle of curvature – Radius of Curvature in Polar Coordinates.

Evolutes, Involutes and Envelops: Evolutes and Involutes – Method to find the evolute of a given curve y = f(x)

Book 1 : Chapter 2, Chapter 3: Pages 345 - 351

Unit II

Ordinary Differential Equation: Linear equations of second and higher order. Book 2 : Chapter 2

Unit III

Partial Differential Equation:

Partial Differential Equations: Introduction – Formation of differential equations – By the elimination of arbitrary constants – By the elimination of arbitrary functions – Solution of partial differential equations – To find the singular integral – To find the general integral – Methods to solve the first order partial differential equations – Type I. F(p, q) = 0 – Type II. Clairaut's Form. z = px + qy + f(p, q) – Type III. F(z, p, q) = 0, F(x, p, q) = 0, F(y, p, q) = 0 – Lagrange's linear equation – Solution of the subsidiary equation by the method of multipliers.

Book 2: Chapter 1: Sections 1.1 - 1.7, 1.9 - 1.12, 1.15, 1.16

Unit IV

Laplace Transform:

Laplace Transforms: Definition – Laplace Transform of standard functions – Theorems (Statements only) –Inverse Laplace transforms – Problems. Book 2: Chapter 1 (Related to the above topics): Pages 187 – 225

Unit V

Fourier Series and its Applications:

Fourier Series – Even and Odd functions – Half range series – Half range sine series – Half range Cosine series.

- .

15 hrs

16 hrs

16 hrs

16 hrs

Book 3: Chapter 1: Pages 96 -145

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
Ι	Mathematics for B.Sc.BrI,	P.Kandasamy and	S.Chand and Company Pvt
	Second Semester, Volume II	K.Thilagavathy	Ltd, First Edition Reprint 2015
II,III &IV	Mathematics for B.Sc.BrI,	P.Kandasamy and	S.Chand and Company Pvt
	Third Semester, Volume III	K.Thilagavathy	Ltd, First Edition Reprint 2015
I & V	Mathematics for B.Sc.BrI,	P.Kandasamy and	S.Chand and Company Pvt
	Fourth Semester, Volume IV	K.Thilagavathy	Ltd, First Edition 2005

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Ancillary Mathematics	S.Narayanan and	S.Viswanathan (Printers &
	Book II	T.K.Manicavasagam Pillay	Publishers), Pvt. Ltd., Reprint - 2002.
2	Ancillary Mathematics,	S.Arumugan,	New Gamma Publishing House,
	volume II	A.Thangapandi and Issac	Palayamkottai, 2002.
Curriculum Design

Sri G.V.G Visalakshi College for Women (Autonomous)

Affiliated to Bharathiar University

Department of Mathematics

B.Sc Mathematics

Scheme of Examination – CBCS Pattern

(For the students admitted during the academic year 2017-2018 onwards)

Sem	Course	Course Title	Ins.	Examination				
	Code		Hrs/ Week	Dur. Hrs	CIA Marks	ESE Marks	Total Marks	- Credits
	117TA1/	Part I Language I	6	3	25	75	100	4
	117MY1/							
	117HD1/							
	117FR1							
	117EN1	Part II English I	6	3	25	75	100	4
		Part III						
Ι	117M01	Core I Algebra and Calculus	5	3	25	75	100	4
	117M02	Core II Differential	5	3	25	75	100	4
		Equations and Laplace						
		Transforms						
	117AM1	Allied I Physics I	6	3	25	50	75	3
	117EVS	Part IV - Environmental	2	2	50	-	50	2
		Studies						
	217TA2/	Part I Language II	6	3	25	75	100	4
	217MY2/							
	217HD2/							
	217FR2							
	217EN2	Part II English II	6	3	25	75	100	4
		Part III						
II	217M03	Core III Analytical	5	3	25	75	100	4
		Geometry						
	217M04	Core IV Numerical Methods	5	3	25	75	100	4
	217AM2	Allied II Physics II	4	3	25	50	75	3
	217AMP	Allied Physics Practical	2	3	20	30	50	2
	217VEC	Part IV-Value Education	2	2	50	-	50	2

	317TA3/	Part I Language III	6	3	25	75	100	4
	317MY3/							
	317HD3/							
	317FR3							
	317EN3	Part II English III	6	3	25	75	100	4
		Part III						
	317M05	Core V Vector Calculus and	3	3	25	50	75	3
тт		Fourier Series						
111	317M06	Core VI Statics	4	3	25	75	100	4
	317AM3/	Allied III Principles of	6	3	25	75/50	100/75	4/3
	317AM4	Accountancy/ Chemistry I						
	317NMC	Part IV- NME – Basic	2	2	50	-	50	2
		Mathematics for Competitive						
		Examinations						
	317MS1	Part IV-Skill Enhancement	3	3	75	-	75	3
		Course I Graph Theory-I						
	417TA4/	Part I Language IV	6	3	25	75	100	4
	417MY4/							
	417HD4/							
	417FR4							
	417EN4	Part II English IV	6	3	25	75	100	4
		Part III						
	417M07	Core VII Discrete	3	3	25	50	75	3
	417M07	Core VII Discrete Mathematics	3	3	25	50	75	3
	417M07 417M08	Core VII Discrete Mathematics Core VIII Dynamics	3	3	25 25	50 75	75 100	3
IV	417M07 417M08 417AM5/	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV Mathematical	3 4 6/4	3 3 3	25 25 25	50 75 75/50	75 100 100/75	3 4 4/3
IV	417M07 417M08 417AM5/ 417AM6	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry II	3 4 6/4	3 3 3	25 25 25	50 75 75/50	75 100 100/75	3 4 4/3
IV	417M07 417M08 417AM5/ 417AM6 417AMP	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry Practical	3 4 6/4 2	3 3 3 3	25 25 25 20	50 75 75/50 30	75 100 100/75 50	3 4 4/3 2
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awareness	3 4 6/4 2 2	3 3 3 3 2	25 25 25 20 100	50 75 75/50 30 -	75 100 100/75 50 100	3 4 4/3 2 2 2
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information Security	3 4 6/4 2 2	3 3 3 3 2	25 25 25 20 100	50 75 75/50 30 -	75 100 100/75 50 100	3 4 4/3 2 2
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill Enhancement	3 4 6/4 2 2 3	3 3 3 3 2 3	25 25 25 20 100 75	50 75 75/50 30 -	75 100 100/75 50 100 75	3 4 4/3 2 2 3
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-II	3 4 6/4 2 2 3	3 3 3 3 2 3	25 25 25 20 100 75	50 75 75/50 30 -	75 100 100/75 50 100 75	3 4 4/3 2 2 3
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2 417MS2 417MA1/	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced Learners	3 4 6/4 2 2 3 -	3 3 3 3 2 3 3 3	25 25 25 20 100 75 -	50 75 75/50 30 - - 100	75 100 100/75 50 100 75 100	3 4 4/3 2 2 3 4*
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2 417MS2 417MA1/ 417MA2	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /	3 4 6/4 2 2 3 -	3 3 3 3 2 3 3	25 25 25 20 100 75 -	50 75 75/50 30 - - 100	75 100 100/75 50 100 75 100	3 4 4/3 2 2 3 4*
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417NGA 417MS2 417MA1/ 417MA2	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /Statistical Quality Control	3 4 6/4 2 2 3 -	3 3 3 3 2 3 3 3	25 25 25 20 100 75 -	50 75 75/50 30 - - 100	75 100 100/75 50 100 75 100	3 4 4/3 2 2 3 4*
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2 417MS2 417MA1/ 417MA2 517M09	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /Statistical Quality ControlPart III Core IX Real	3 4 6/4 2 2 3 -	3 3 3 3 2 3 3 3 3	25 25 25 20 100 75 - 25	50 75 75/50 30 - - 100 75	75 100 100/75 50 100 75 100 100	3 4 4/3 2 2 3 4* 4
IV	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417MS2 417MS2 417MA1/ 417MA2 517M09	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /Statistical Quality ControlPart III Core IX RealAnalysis I	3 4 6/4 2 2 3 -	3 3 3 3 2 3 3 3	25 25 25 20 100 75 - 25	50 75 75/50 30 - - 100 75	75 100 100/75 50 100 75 100 100	3 4 4/3 2 2 3 4* 4
IV V	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417NGA 417MS2 417MA1/ 417MA2 517M09 517M10	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /Statistical Quality ControlPart III Core IX RealAnalysis ICore X Complex Analysis I	3 4 6/4 2 2 3 - 6 5	3 3 3 3 2 3 3 3 3	25 25 25 20 100 75 - 25 25	50 75 75/50 30 - 100 75 75 75	75 100 100/75 50 100 75 100 100 100	3 4 4/3 2 2 2 3 4* 4 4
IV V	417M07 417M08 417AM5/ 417AM6 417AMP 417NGA 417NGA 417MS2 417MS2 517M09 517M10 517M11	Part IIICore VII DiscreteMathematicsCore VIII DynamicsAllied IV MathematicalStatistics/ Chemistry IIAllied Chemistry PracticalPart IV-General Awarenessand Information SecurityPart IV- Skill EnhancementCourse II Graph Theory-IIAdvanced LearnersCourses – I Combinatorics /Statistical Quality ControlPart III Core IX RealAnalysis ICore X Complex Analysis ICore XI Abstract Algebra	3 4 6/4 2 2 3 - 6 5 5 5	3 3	25 25 25 20 100 75 - 25 25 25 25	50 75 75/50 30 - 100 75 75 75 75	75 100 100/75 50 100 75 100 100 100 100	3 4 4/3 2 2 2 3 4* 4 4 4 4

	517ME1 &	Elective I	Theory	4	3	15	35	50	3		
	517MP1/		Practicals	2	3	15	35	50	1		
	517ME2	Elective I		6	3	25	75	100	4		
	517MS3 Part IV - Skill Enhancement Course III Scilab		3	3	75	-	75	3			
	617M13	Part III Core	XIII Real Analysis II	5	3	25	75	100	4		
	617M14	Core XIV Complex Analysis II		5	3	25	75	100	4		
	617M15	Core XV Line	ar Algebra	5	3	25	75	100	4		
	617ME3/	Elective II		6	3	25	75	100	4		
	617ME4/ 617ME5/ 617ME6	Elective III		Elective III		6	3	25	75	100	4
VI	617MS4	Part IV- Skill Enhancement Course IV Internship / Summer Training		3	-	75	-	75	3		
	617EX1/ 617EX2/ 617EX3/ 617EX4/ 617EX5	Part V- Extension activity NCC / NSS / YRC / RRC / Games		-	-	50	-	50	2		
	617MA3/ 617MA4	Advanced Lea Courses – II M Insurance/ Intr Wavelet theory	Arners Mathematics in oduction to	-	3	-	100	100	4*		
			Total					3500	140		

*Starred credits are treated as additional credits (Optional)

List of Electives: Semester V-Elective-I 517ME1- Programming in C(Theory) 517MP1- Programming in C Practicals 517ME2- Number Theory

Semester VI- Elective-II / III
617ME3 - Operations Research
617ME4 - Mathematical Cryptography
617ME5 - Fuzzy and Intuitionistic fuzzy sets
617ME6 - Astronomy

Employability Courses

B.Sc Mathematics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core IX Real Analysis I	Course Code: 517M09
Semester: V	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: 75:15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- to provide a smooth transition from elementary calculus to advanced topics in the theory of real variables.
- ➤ to apply the concepts of calculus to geometrical and physical problems in higher dimensional spaces.
- to expose the properties of limit and continuity which are indispensable to the study of subjects such as optimization theory.
- to impart adequate knowledge about functional relationships between the variables which have more applications in expressing the laws of physics, chemistry, mechanics etc.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	apply the properties of real numbers.	Α
CO2	acquire the knowledge of sets, relations and functions.	R
CO3	classify the countable, uncountable, open, closed and compact sets.	U
CO4	interpret the properties of sets in Metric spaces.	U
CO5	analyse the nature of sets under limits and continuity.	Α
CO6	identify the relation between completeness and compactness of sets	R
	in metric space.	

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I: The real and complex number systems: Introduction – The field axioms – The order axioms – Geometric representation of real numbers – Intervals – Integers – The unique factorization theorem for integers – Rational numbers – Irrational numbers – Upper bounds, maximum element, least upper bound – The completeness axiom – Some properties of the supremum – Properties of the integers deduced from the completeness axiom – The Archimedean property of the real number system – Rational numbers with finite decimal representation – Finite decimal approximations to real numbers – Infinite decimal representation of real numbers – Absolute values and the triangle inequality – The Cauchy-Schwarz inequality – Plus and minus infinity and the extended real number system R – Simple problems.

Chapter 1: Sections 1.1 - 1.20

Unit II

16 hrs

Some basic notations of set theory: Introduction – Notations – Ordered pairs – Cartesian product of two sets – Relations and functions – Further terminology concerning functions – One to one functions and inverses – Composite functions Sequences – Similar sets – Finite and infinite sets – Countable and uncountable sets – Uncountability of the real number system – Set algebra – Countable collections of countable sets – Simple problems. Chapter 2: Sections 2.1 - 2.15

Unit III

Elements of point set Topology: Introduction – Euclidean space R^n – Open balls and open sets in R^n – The structure of open sets in R^1 – Closed sets – Adherent points, Accumulation points – Closed sets and adherent points – The Bolzano-Weierstrass theorem – The Cantor intersection theorem.

Chapter 3: Sections 3.1 - 3.9

Unit IV

Elements of point set Topology: The Lindel of covering theorem – The Heine-Borel covering theorem – Compactness in \mathbb{R}^n – Metric Spaces – Point set Topology in metric spaces – Compact subsets of a metric space – Boundary of a set – Simple problems. Chapter 3: Sections 3.10 - 3.16

Unit V

Limits and Continuity: Introduction – Convergent sequences in a metric space – Cauchy sequences – Complete metric spaces – Limit of a function – Limits of complex-valued functions – Limits of vector valued functions – Continuous functions – Continuity of composite functions – Continuous complex valued and vector valued functions – Examples of continuous functions – Continuity and inverse images of open or closed sets – Functions continuous on compact sets – Topological mappings – Bolzano's theorem. Chapter 4: Sections 4.1 - 4.15

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Mathematical Analysis	Tom M.Apostol	Narosa Publishing House, Second
			Edition, Twentieth Reprint 2002.

15 hrs

15 hrs

16 hrs

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Principles of	Walter Rudin	McGraw Hill, Third Edition,
	Mathematical Analysis		1976.
2.	Source book on Real	M.S.Rangachari	New Century Book House (P)
	Analysis part I		Ltd, 1996
3.	Modern Analysis	Arumugam, Isaac	New Gamma Publishing
			House, 1994

Mathematics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core X Complex Analysis I	Course Code: 517M10
Semester: V	No. of Credits: 4
No. of hours : 75 (Total hours)	C:T: 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C: Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- ➤ to enable the students to understand the important concepts such as continuity, differentiability and analyticity of complex function with appropriate illustrations.
- > to introduce analytic functions and its properties in the complex plane
- > to impart adequate knowledge about power series in complex plane.
- ➢ to study about the elementary transformations

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	specify the geometric properties of the complex number system.	R
CO2	analyze differentiability of complex functions in various domains.	Α
CO3	identify analytic and harmonic functions.	R
CO4	derive and apply bilinear transformations and cross ratio.	Α
CO5	examine the convergence of power series.	Α
CO6	express exponential, trigonometric, hyperbolic and logarithmic functions in terms of power series	U
CO7	describe the transformation of various curves and regions in the complex plane under elementary analytic functions.	А

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I:								13 hr	S
Complex Numbers:	Introduction	_	Complex	Numbers	_	Conjugation	and	Modulus	_

Inequalities – Square Root – Geometrical Representation of Complex Numbers – nth Roots of Complex Numbers – Circles and Straight Lines – Regions in the Complex Plane – The Extended Complex Plane.

Chapter 1: Sections 1.0 - 1.9

Unit II

13 hrs

13 hrs

13 hrs

13 hrs

Analytic Functions: Introduction – Functions of a Complex variable – The Cauchy-Riemann Equations – Analytic Functions – Harmonic Functions – Conformal mapping. Chapter 2: Sections 2.0, 2.1, 2.6 - 2.9

Unit III

Bilinear transformations: Introduction – Elementary Transformations – Bilinear Transformations – Cross Ratio – Fixed points of Bilinear Transformations – Some special Bilinear Transformations.

Chapter 3: Sections 3.0 - 3.5

Unit IV

Power Series: Introduction – Sequences and Series – Sequences and Series of Functions – Power Series–Elementary Functions. Chapter 4: Sections 4.0 - 4.4

Unit V

Mapping by Elementary Functions: Introduction – The Mappings $\omega = z^2$, $\omega = z^n$ where n is a positive integer, $\omega = e^z$, $\omega = \sin z$, $\omega = \cos z$, $\omega = \cosh z$, $\omega = \frac{1}{2}\left(z + \frac{1}{z}\right)$. Chapter 5: Sections 5.0 - 5.7

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I - V	Complex Analysis	S.Arumugam, A.Thangapandi Isaac,	Scitech publications (India)
		A.Somasundaram	Pvt ltd, Reprint 2012

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Complex Analysis	V.Karunakaran	Narosa Publishing House, 2002.
2.	Complex Analysis	P.Duraipandian,	Emerald publishers, Revised
		Laxmi Duraipandian and	edition Reprint 2006
		D.Muhilan	

B.Sc Mathematics

Semester V

(T	41		J		. 3017	2010 J	
IHOR	the students	aamittea a	niiring the	academic veai	· /UI / _	201X and	onwardsi
	me students	aumittu	uui ing tiit	acaucinic ycar		avio ana	on war aby

Course: Part III - Core XI Abstract Algebra	Course Code: 517M11
Semester: V	No. of Credits: 4
No. of hours :75 (Total hours)	C:T: 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- ➤ to introduce the basics of group theory.
- > to relate different algebraic structures like rings, fields and ideals.
- to gain deep knowledge in the structure preserving mappings like homomorphism, isomorphism etc.
- to possess deep knowledge in the field of quotients of an integral domain and Euclidean rings

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	acquire knowledge about mapping and Euclidean algorithm.	R
CO2	acquire knowledge about the concept of rings and their basic properties.	R
CO3	classify the properties of different algebraic structures.	U
CO4	characterize the mappings between algebraic structures.	Α
CO5	discuss the structure preserving mappings like homomorphism, isomorphism etc	U
CO6	solve the problems related to algebraic structures.	Α

<u>R-Remembrance U – Understanding A-Apply</u>

Synabus:
Unit I: 13 hrs
Preliminary Notions: Mappings - The integers (unique factorization theorem statement
only). Group Theory: Definition of a Group - Some Examples of Groups - Some
preliminary Lemmas – Sub groups – Simple problems.
Chapter 1: Sections 1.2, 1.3, Chapter 2: Sections 2.1 - 2.4

Unit II	13 hrs
Group Theory: A Counting principle – Normal subgroups and quotient	groups –
Homomorphisms – Simple problems.	
Chapter 2: Sections 2.5 - 2.7	
Unit III	13 hrs

Group theory: Automorphisms – Cayley's theorem – Permutation groups – Simple problems. Chapter 2: Sections 2.8 - 2.10

Unit IV

13 hrs

Ring Theory: Definitions and examples of rings – Some special classes of rings – Homomorphisms – Ideals and quotient rings – Simple problems. Chapter 3: Sections 3.1 - 3.4

Unit V

13 hrs

Ring Theory: More ideals and quotient rings – The field of quotients of an integral domain –Euclidean rings – Simple problems.

Chapter 3: Sections 3.5 - 3.7

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I- V	Topics in Algebra	I.N. Herstein	Wiley India pvt limited, Second Edition Reprint
			2015.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Basic Abstract	P.B.Bhattacharya, S.k.Jain,	Cambridge University press,
	Algebra	S.R.Nagpoul	Second Edition, Reprint 2004.
2.	A First Course in	John B. Fraleigh	Addition Wesley Publishing
	Abstract Algebra		Company, Fifth printing 2003

B.Sc Mathematics Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core XIII Real Analysis II	Course Code: 617M13
Semester: VI	No. of Credits: 4
No. of hours :75 (Total hours)	C:T: 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- to impart knowledge and understanding in the advanced topics such as Riemann-Stieltjes integral, Functions of bounded variables.
- ➤ to study derivatives of higher dimensional spaces.
- to extend the mean value theorem and Taylor's formula for higher dimensional spaces which have many applications in optimization theory.
- to know the applications of the ideas that are being studied in differentiation to integral equations, differential equations and function spaces.

СО	Statement	Bloom's	
		Taxonomy level	
CO1	explain and illustrate the connectedness of metric spaces and its	T	
	relation to continuity of functions.	U	
CO2	describe the concept of uniform continuity and compact sets.	U	
CO3	gain a complete knowledge of derivatives and apply them	Δ	
	appropriately .	1	
CO4	analyze various properties of monotonic functions and functions	Α	
	of bounded variation.	1	
CO5	recognize the impact of monotonicity and bounded variation in	р	
	Riemann- Stieltjes Integral.	Ň	
CO6	relate upper and lower integrals with Riemann- Stieltjes Integral.	R	

Course Outcomes: On completion of the Course the student will be able to

R-Remembrance U – Understanding A-Apply

Syllabus: Unit I.

I	IIIt 1.	15 11 5
	Limits and Continuity: Connectedness - Components of a metric space - A	Arcwise
	connectedness - Uniform continuity - Uniform continuity and compact sets - Fixed	ed point
	theorem for contractions - Discontinuities of real valued functions - Monotonic func-	ctions –
	Simple problems.	
	Chapter 4: Sections 4.16 - 4.23	

Unit II

Derivatives: Introduction – Definition of derivative – Derivatives and continuity – Algebra of derivatives – The chain rule – One sided derivatives and infinite derivatives – Functions with nonzero derivative – Zero derivatives and local extrema – Rolle's theorem – The Mean–Value theorem for derivatives – Intermediate value theorem for derivatives – Taylor's formula with remainder – Simple problems. Chapter 5: Sections 5.1 - 5.12

Unit III

13 hrs

Functions of bounded variation and Rectifiable curves: Introduction – Properties of Monotonic functions – Functions of bounded variation – Total Variation – Additive property of Total Variation – Total Variation on [a, x] as a function of x – Functions of bounded variation expressed as the difference of increasing functions – Continuous functions of bounded variation. Chapter 6: Sections 6.1 - 6.8

Unit IV

13 hrs

The Riemann-Stieltjes integral: Introduction – Notation – The definition of the Riemann-Stieltjes integral – Linear Properties – Integration by parts – Change of Variable in a Riemann-Stieltjes integral – Reduction to a Riemann integral – Step functions as integrators – Reduction of a Riemann-Stieltjes integral to a finite sum – Euler's summation formula –

13 hrs

12 hm

Simple problems. Chapter 7: Sections 7.1 - 7.10

Unit V

13 hrs

The Riemann-Stieltjes integral: Monotonically increasing integrators. Upper and Lower integrals – Additive and linearity properties of upper and lower integrals – Riemann's condition – Comparison theorems – Integrators of bounded variation – Sufficient conditions for existence of Riemann-Stieltjes integral – Necessary conditions for existence of Riemann-Stieltjes – N

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I - V	Mathematical	Tom M.Apostol	Narosa Publishing House, Second Edition,
	Analysis		Twentieth Reprint 2002.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Principles of	Walter Rudin	McGraw Hill, Third Edition, 1976.
	Mathematical Analysis		
2	Source book on 'Real	M.S.Rangachari	New Century Book House (P) Ltd,
	Analysis part I		1996
3	Source book on 'Real	G.Rangan	New Century Book House (P) Ltd,
	Analysis part II		1998

B.Sc Mathematics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core XIV Complex Analysis II	Course Code: 617M14
Semester: VI	No. of Credits: 4
No. of hours : 75 (Total hours)	C:T: 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- > to comprehend the fundamental concepts of complex analysis.
- > to apply the techniques of complex analysis to problems in mathematics and physics.
- to examine the analytic functions of complex variables which are closely connected in solving Laplace equation, to which numerous problems of mechanics and physics reduce.
- ➤ to apply residues in evaluating integrals.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level

C01	understand the basic idea of complex integration.	U
CO2	derive and apply various Cauchy's integral formulae.	Α
CO3	express a given function as a power series in the defined region.	U
CO4	identify and classify the singular points and the behaviour of a function in the neighbourhood of a singular point.	R
CO5	acquire knowledge about the residue of a function and various methods to find the same.	Α
CO6	derive and apply Cauchy residue theorem to evaluate certain types of real definite integrals.	Α

13 hrs

13 hrs

13 hrs

13 hrs

13 hrs

R-Remembrance U – Understanding A-Apply

Syllabus:

•			
Unit	I:		

Complex Integration: Introduction – Definite integral – Cauchy's Theorem. Chapter 6: Sections 6.0 - 6.2

Unit II

Complex Integration: Cauchy's Integral Formula – Higher Derivatives. Chapter 6: Sections 6.3 and 6.4

Unit III

Series Expansions: Introduction – Taylor's Series – Laurent's Series. Chapter 7: Sections 7.0 - 7.2

Unit IV

Series Expansions: Zeros of an Analytic function – Singularities. Calculus of Residues: Introduction – Residues. Chapter 7: Sections 7.3 and 7.4. Chapter 8: Sections 8.0 and 8.1

Unit V

Calculus of Residues: Cauchy's Residue Theorem – Evaluation of Definite Integrals. Chapter 8: Sections 8.2 and 8.3

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Complex Analysis	S.Arumugam, A.Thangapandi	Scitech publications (India)
		Isaac, A.Somasundaram	Pvt ltd, Reprint 2012

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Complex Analysis	V.Karunakaran	Narosa Publishing House,
			2002.

2	Complex Analysis	P.Duraipandian, Laxmi	Emerald publishers, Revised
		Duraipandian and D.Muhilan	edition Reprint 2006

B.Sc Mathematics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core XV Linear Algebra	Course Code: 617M15
Semester: VI	No. of Credits: 4
No. of hours :75 (Total hours)	C:T: 65:10
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- to introduce a new algebraic structure, vector space and its concepts, like linear dependence, basis, dimension etc., which have wide applications in many branches of mathematics.
- ➤ to distinguish various algebraic structures.
- to introduce many types of matrices which are useful for representing problems in an efficient way.
- > to infer the relationship between the linear transformation in vector spaces and matrices.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	find basis, linear independence and dimension in a vector space.	U
CO2	relate the concept of dual space and the notion of an inner product	R
	space.	
CO3	identify the algebra of linear transformations and the matrix of a	D
	linear transformation.	Ν
CO4	acquire knowledge about the types of linear transformations and	٨
	their properties.	A
CO5	discuss about the types of matrices	U
CO6	apply the concept of characteristic roots and characteristic vectors	•
	of a square matrix.	А
D D		

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I:

13 hrs

Vector Spaces and Modules: Elementary basic concepts – Linear Independence and bases – Simple problems.

Book 1: Chapter 4: Sections 4.1 and 4.2

Unit II

13 hrs

Vector Spaces and Modules: Dual spaces – Inner product spaces – Simple problems. Book 1: Chapter 4: Sections 4.3 and 4.4

Unit III

Linear Transformations: The Algebra of Linear Transformations – Characteristic Roots – Matrices – Simple problems.

Book 1: Chapter 6: Sections 6.1 - 6.3

Unit IV

Linear Transformations: Hermitian, Unitary and Normal Transformations – Simple problems.

Book 1: Chapter 6: Section 6.10

Unit V

Matrices: Symmetric and Skew-Symmetric matrices – Hermitian and Skew-Hermitian matrices – Orthogonal and Unitary matrices. **Linear Transformations of Vector spaces:** Characteristic Roots and Characteristic Vectors of a square matrix– Simple problems. Book 2: Chapter 1: Sections 1.7 - 1.9. Chapter 3: Section 3.9

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I - IV	Topics in Algebra	I.N. Herstein	Wiley India Pvt limited, Second
			Edition Reprint 2015.
V	A Text Book of	R. Balakrishnan and	Vikas Publishing
	Modern Algebra	N. Ramabhadran	House Pvt Ltd, Third edition, 1979.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Modern Algebra	Surjeet Singh and	Vikas Publishing
		Qazi Zameerudin	House, Third Edition, 1979.
2	A Text book in Modern	R.S. Aggarwal	S.Chand and company Ltd,
	Algebra		New Delhi, 1996.
3	Linear Algebra Theory	Ward Cheney,	Raj Press, New Delhi, Second Edition
	& Applications	David Kincaid	

Entrepreneurship Courses

B.Sc. Mathematics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Elective II Operations Research	Course Code: 617ME3
Semester: VI	No. of Credits: 4
No. of hours : 90 (Total hours)	C:T: 75:15
CIA Max. Marks: 25	ESE Max. Marks:75

(C:Contact hours, T:Tutorial)

Course Objectives:

The prime objectives for introducing this course are:

➤ to gain knowledge on techniques for solving linear programming problem.

13 hrs

13 hrs

- ➤ to identify the optimum allocation of resources to respective destination.
- ➤ to assign suitable resources to respective jobs.
- ➢ to apply optimization in networks.
- > to develop knowledge in basic techniques to deal with inventory

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	recall the basic concepts of Linear Programming Problems and	Α
	solve them	
CO2	explain the concept of Duality and its applications	R
Ç03	minimize the cost in transportation problems and assignment	Α
	problems	
CO4	determine the appropriate order for a series of jobs to be done on	U
	a finite number of service facilities	
CO5	apply the optimization techniques in inventory control.	Α
CO6	demonstrate the applications of various optimization tools to the	Α
	real life problems involving networks.	

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I 15 hrs
Linear Programming Problem - Graphical solution and Extension: Introduction -
Graphical solution method - Some exceptional cases - General linear programming problem
- Canonical and standard forms of L.P.P. Linear programming problem - Simplex
method: Introduction - Fundamental properties of solutions - The computational procedure
– Use of artificial variables.

Chapter 3: Sections 3.1 - 3.5, Chapter 4: Sections 4.1 - 4.4

Unit II 15 hrs
Duality in Linear Programming: Introduction – General Primal-Dual pair – Formulating a
dual problem - Primal-Dual pair in matrix form - Duality and Simplex method.
Transportation Problem: Introduction – LP formulation of the transportation problem –
Existence of Solution in T.P – Duality in transportation problem – The transportation table –
Loops in transportation tables - Triangular basis in a T.P - Solution of a transportation
problem - Finding an initial basic feasible solution - Test for optimality - Economic
Interpretation of u_j 's and v_j 's – Degeneracy in transportation problem – Transportation
algorithm [MODI method]. Assignment Problem: Introduction – Mathematical formulation
of the problem – Solution Methods of Assignment Problem.
Chapter 5: Sections 5.1 - 5.4, 5.7 Chapter 10: Sections 10.1 - 10.13
Chapter 11: Sections 11.1 - 11.3

Unit III

Sequencing Problem : Introduction-Problem of Sequencing-Basic terms used in

Sequencing - Processing n jobs through two machines - Processing n jobs through k machines - Processing 2 jobs through k machines.

Chapter 12: Sections 12.1 -12.6

Unit IV

Inventory Control – I: Introduction – Types of Inventories – Reasons for carrying Inventories – The inventory decisions – Objectives of Scientific Inventory Control – Costs associated with inventories – Factors affecting inventory control – An Inventory Control Problem – The Concept of EOQ – Deterministic inventory problems with No shortages – Deterministic inventory problems with shortages – Problems of EOQ with Price Breaks. Chapter 19: Sections 19.1 - 19.12

Unit V

15 hrs

Network Scheduling by PERT/CPM: Introduction – Network: Basic Components – Logical Sequencing – Rules of Network Construction – Concurrent Activities – Critical path analysis – Probability considerations in PERT – Distinction between PERT and CPM. Chapter 25: Sections 25.1 - 25.8

Note: Only Statement of the theorems and Algorithms are included.

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I - V	Operations Research	Kanti Swarup, P.K	Sultan Chand & Sons, New Delhi,
		Gupta, Man Mohan	Eighteenth Edition, 2015.

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Operations Research: Theory and	J.K.Sharma	MacMillan India Ltd, Fourth
	Applications		Edition, 2010.
2	Operations Research: An Introduction	Hamdy A. Taha	Pearson India Pvt Ltd, 2016.

B.Sc Mathematics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Elective II / III - Fuzzy and Intuitionistic	Course Code: 617ME5
Fuzzy Sets	
Semester: VI	No. of Credits: 4
No. of hours : 90 (Total hours)	C:T:75:15
CIA Max. Marks: 25	ESE Max. Marks:75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

➤ to introduce the concept of fuzziness.

15 hrs

15 hrs

- ➤ to give knowledge about applications of Fuzzy logic.
- > to enable the students to apply the soft computing methodologies in their fields of work.
- ➢ to introduce the Intuitionistic fuzzy sets and their properties.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	compare fuzzy sets with crisp sets.	U
CO2	acquire knowledge about the fuzzy logic and defuzzification	Α
	methods and apply them.	
CO3	acquire knowledge about Genetic Algorithms.	R
CO4	express the given system using associative memories.	U
CO5	explain the concepts of Intuitionistic fuzzy sets and its basic	U
	properties.	
CO6	apply the methods of fuzzy sets and fuzzy logic in fuzzy control	Α
	systems.	

R-Remembrance U – Understanding A-Apply

Syllabus:

 Unit I
 15 hrs

 Fuzzy Set Theory: Fuzzy versus Crisp – Crisp sets – Fuzzy sets – Crisp relations – Fuzzy relations.

 Book 1: Chapter 6

Unit II

Fuzzy Systems: Crisp Logic – Predicate Logic – Fuzzy Logic – Fuzzy Rule based system Defuzzification Methods – Applications. Book 1: Chapter 7

Unit III

15 hrs

15 hrs

15 hrs

Fundamentals of Genetic Algorithms: Genetic Algorithms: History – Basic concepts Creation of offsprings – Working Principle – Encoding – Fitness function. Book 1: Chapter 8: Sections 8.1 – 8.6

Unit IV

Fuzzy Associative Memories: FAM – An Introduction – Single Association FAM – Fuzzy Hebb FAMs – FAM Involving a Rule Base – FAM Rules with Multiple Antecedents/Consequents – Applications. Book 1: Chapter 14

Intuitionistic fuzzy sets: Definition of the concept of an Intuitionistic fuzzy set– An Example – Operations and Relations over Intuitionistic fuzzy sets. Properties (upto Proposition 1.13)

Book 2: Chapter 1: Sections 1.1 - 1.2

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I - IV	Neural Networks, Fuzzy Logic,	S.Rajasekaran, and	PHI Learning Pvt. Ltd, New
	and Genetic Algorithm: Synthesis	G.A.Vijayalakshmi Pai	Delhi, 2010
	and Applications		
V	Intuitionistic fuzzy sets, Theory	Krassimir T.Atanassov	Physica - Verlag Heidelberg,
	and Applications		New York, 1999

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1	Fuzzy Logic with Engineering	Timothy, J.Ross	McGraw Hill, 1997
	Applications		

Skill Development Courses

B.Sc Mathematics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III - Core XII Group Project	Course Code: 517M12	
Semester: V	No. of Credits: 4	
No. of hours :75 (Total hours)	P:T:65:10	
CIA Max. Marks: 50	ESE Max. Marks: 50	

(P:Project hours, T:Tutorial)

Preamble:

This course is offered with an intention of promoting knowledge sharing and team work. It enables the students to communicate and share their expertise to enhance their Skills. Students are motivated to take up interdisciplinary projects to learn and analyse the application of mathematics in various disciplines like Physics, Chemistry, Biosciences and Social sciences.

Course Objectives: Objectives of this course are

- ➤ to develop teamwork.
- ➢ to enhance communicative capabilities.
- ➤ to provide foundation for creativity and research.
- > to manage a given task efficiently in the stipulated time.

Course Outcomes: On completion of the course the student will be able to

CO	Statement	Bloom's
		Taxonomy level

CO1	collaborate and cooperate among themselves to execute the task.	U
CO2	develop communication and teamwork skills.	R
CO3	pool their expertise, knowledge and skills and complete the tasks.	Α
CO4	effectively manage time, execute the plan and integrate various activities	Α
CO5	break down a complex problem into simple components and determine solutions for the same.	Α
CO6	prepare and present the report of the project in an organized manner.	Α

B.Sc Mathematics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part III – Elective I Number Theory	Course Code: 517ME2
Semester: V	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: 75:15
CIA Max. Marks: 25	ESE Max. Marks: 75

(C:Contact hours, T:Tutorial)

Course Objectives:

The objectives of this course are

- > to impart the basic knowledge about number theoretic concepts.
- ➤ to improve problem solving ability related to number theory.
- > To enable the students to construct mathematical proofs and to provide counter examples.
- to make students familiar with basic properties and techniques of finite fields and their application to cryptography and coding theory.

Course Outcomes: On completion of the Course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	know about the basic concepts of numbers.	R
CO2	understand the origin of the operations of integers and	U
	algorithms relevant to it.	
CO3	identify all prime numbers in a given range using the sieve of	R
	Eratosthenes.	
CO4	solve congruences	Α
CO5	test primitive roots.	Α
CO6	apply number theory in cryptography.	Α

R-Remembrance U – Understanding A-Apply

Syllabus:

Unit I:									15	hrs
Natural	Numbers	:	Peano's	axioms	_	Mathematical	induction	_	Addition	and

Multiplication – order relation – Principle of well ordering. **Integers :** Addition and Multiplication – Positive and Negative integers – Trichotomy law – Absolute value – Binomial Theorem. **Divisibility :** Associates – Division Algorithm – GCD (HCF) – Euclidean Algorithm – L.C.M.- Worked Examples Chapters 1, 2, 3

Unit II

15 hrs

Prime and Composite Numbers : Sieve of Eratosthenes – Euclid's Theorem – Unique factorization – Fundamental theorem of Arithmetic – Postional representation of integers – number of divisors – Sum of divisors – Symbols d(n), $\sigma(n)$ – Arithmetic functions – Perfect Numbers. Related Problems in Examples 7 and 8. Chapter 4: Pages 61 - 84

Unit III

15 hrs

Congruences : Definition – Residue classes – Complete and least residue systems – Reduced residue systems – Casting out 9 – Magic Numbers – Divisibility tests – Linear Congruences – Solution of Congruences – Chinese Remainder Theorem. Related Problems in Examples 15 - 19. Chapter 6

Unit IV

15 hrs

Theorems of Fermat and Wilson : Little's Fermat's Theorem – Euler's extension – inverse modulo – Wilson's Theorem and its converse. Related Problems in Examples 20-22.

Chapter 7: Pages 208 - 235

Unit V

15 hrs

Primitive Roots : Exponent of an integer – Primitive roots – Number of Primitive roots – 1, 2, 4, p^{α} , $2p^{\alpha}$ alone have primitive roots – Test for primitive roots – Legendre theorem. Related Problems in Examples 26 and 27.

Chapter 9: Pages 274 - 303 Book for study:

UnitName of the BookAuthorsPublishers with EditionI -VElements of NumberKumaravelu andFirst EditionTheorySusheela KumaraveluJanuary 2002

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition
1.	Elementary Number	David M.Burton	McGraw Hill Education (India)
	Theory		Private Limited, Seventh Edition
			Eleventh reprint, 2015.

2.	An Introduction to	Ivan Niven and	Wiley Eastern Ltd, Fifth Edition,
	Theory of Numbers	Herbert S. Zuckerman	2004 Reprint.

B.Sc Mathematics

Semester V

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part IV – Skill Enhancement Course III SCILAB	Course Code: 517MS3
Semester: V	No. of Credits: 3
No. of hours : 45 (Total hours)	T:P:6:39
CIA Max. Marks: 75	ESE Max. Marks:-

(T:Tutorial, P:Practical)

Course Objectives:

The objective of this course is to

- > develop the logical and programming skills.
- > provide hands on training in executing programs.
- > gain skills to implement the algorithms.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	describe the basic features of the SCILAB software.	R
CO2	use basic structures to develop code in SCILAB to handle arrays and perform mathematical operations.	U
CO3	demonstrate appropriate use of graphical functions	U
CO4	apply the concept of structures and functions in establishing databases/ simple banking operations.	Α
CO5	interpret and visualize application of mathematical concepts in application processing and numeric manipulations.	Α
CO6	apply the working knowledge of SCILAB package to solve ODE's and LPP's.	Α

R-Remembrance U – Understanding A-Apply

Syllabus:

Scilab – List of Programs

39hrs

1.Solving a system of linear Equations.

2. Arithmetic operations on arrays.

3.Drawing 2D and 3D plots.

4. Finding derivatives and integrals of polynomials.

5.Creating a structure for an employee data base containing employee code, name, designation and salary.

6.A function subprogram to calculate the compound interest, given the initial amount, time period of deposit, rate of interest and time of compounding.

7.Program to process the applications for admission to an engineering college and to list the candidates eligible for admission based on the following conditions:

(a) Marks in Mathematics ≥ 60

(b)	Marks	in	Physics	≥55

- (c) Marks in Chemistry ≥ 55
- (d) Total marks ≥ 180

8. Program to reverse the digits of a number having minimum three digits.

9. Program to solve first order Ordinary Differential Equations (ODE's).

10. Solving Linear Programming Problem (LPP).

Books for Reference:

S.No	Name of the Book	Authors	Publishers with Edition	
1.	Programming in Scilab	Vinu Dass	New Age International Private	
			Ltd, New Delhi 2009	

B.Sc Mathematics

Semester VI

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Part IV-Skill Enhancement Course IV Internship /	Course Code: 617MS4
Summer Training	
Semester: VI	No. of Credits: 3
No. of hours : 45(Total hours)	I:T:R: 30:6:9
CIA Max. Marks: 75	

(I :IntershipTraining, T: Tutorial, R: Report)

Preamble:

Internship is intended to provide a proactive industry/ Subject oriented exposure at institutes of repute to the students so as to smoothly enter into a profession of their choice on completing their graduation. In this course students are expected to undergo intensive training in institutions for 30 hours, with a certification from the institute. It is followed by discussion with the faculty or other experts to prepare the reports. The reports are prepared and submitted for evaluation.

Course Objectives:

The objectives of this course are to

- > enable the students to seek career alternatives before graduation.
- ➢ integrate theory and practice.
- > realize their abilities in their field of study.
- > inculcate work ethics and appropriate attitudes needed for a profession.
- > improve communication, interpersonal and other professional skills.

Course Outcomes: On completion of the Course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	learn to use profession specific terminology.	R
CO2	effectively plan and utilize ICT tools to complete the task.	U
CO3	apply the knowledge acquired in the campus to the task.	Α
CO4	demonstrate problem-solving and critical thinking skills.	Α

CO5	exhibit appropriate workplace attitudes	Α
CO6	manage and review their personal behavior and attitudes.	U

Curriculum Design Sri G.V.G. Visalakshi College for Women (Autonomous) Affiliated to Bharathiar University M.Sc Mathematics Scheme of Examination – OBE & CBCS Pattern

(For the students admitted from the academic year 2021-2022 onwards)

C	6	C	Inc	Examination				
Sem	Code	Course little	Hrs/ week	Dur Hrs	CIA Marks	ESE Marks	Total Marks	Credits
	21MM01	Core I : Algebra	6	3	50	50	100	4
	21MM02	Core II : Real Analysis	6	3	50	50	100	5
Ι	21MM03	Core III :Ordinary Differential Equations	6	3	50	50	100	4
	21MM04	Core IV : Advanced Operations Research	6	3	50	50	100	4
	21MME1/ 21MME2	Elective I: Differential Geometry/ Number Theory	6	3	50	50	100	4
	21MM05	Core V: Complex Analysis	5	3	50	50	100	5
II	21MM06	Core VI: Partial Differential Equations	6	3	50	50	100	4
	21MM07	Core VII: Special Functions	5	3	50	50	100	4
	21MM08	Core VIII: Numerical Analysis	6	3	50	50	100	4
	21MME3/ 21MME4	Elective II: Control Theory/ Stochastic Processes	6	3	50	50	100	4
	21MGCS	Cyber Security	2	2	50	-	50	Grade
	21MMA1/ 21MMA2	Advanced Learners Course I: LaTeX / Financial Mathematics	-	3	-	100	100	4*
	21MM09	Core IX : Topology	5	3	50	50	100	5
III	21MM10	Core X : Classical Mechanics	5	3	50	50	100	4
	21MM11	Core XI : Programming with C++	3	3	50	50	100	3
	21MMCP	Programming with C++ Practicals	3	3	50	50	100	1
	21MM12	Core XII : Mathematical Modelling	5	3	50	50	100	4

	•		1	I		Total	2300	90
	21MMA3/ 21MMA4/ 21MMA5	Advanced Learners Course II : Computational Mathematics Laboratory / Mathematical Biology/MOOC	-	3	-	100	100	4*
	21MMPV	Project and Viva-Voce	6	-	100	100	200	8
IV	21MME7/ 21MME8	Elective IV: Statistical Methods / Transforms and Signals	6	3	50	50	100	4
	21MM15	Core XV : Fluid Dynamics	6	3	50	50	100	4
	21MM14	Core XIV : Functional Analysis	6	3	50	50	100	4
	21MM13	Core XIII : Mathematical Methods	6	3	50	50	100	5
	21MMPV	Project and Viva-Voce	3	-	-	-	-	-
	21MMIS	Internship /Summer School/Sports Training/Short term Course	-	-	50	-	50	2
	21MME5/ 21MME6	Elective III : Graph Theory/ Coding Theory	6	3	50	50	100	4
	21MME5/	Elective III : Graph Theory/	6	3	50	50	100	4

*Starred credits are treated as additional credits which are optional.

Employability Courses

M. Sc. Mathematics

Semester I

[For the students admitted from the academic year 2021-2022 onwards]

Course: Core I Algebra	Course Code: 21MM01
Semester: I	No. of Credits: 4
No. of hours :75	C:T:S: 52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial, S:Seminar)

Course Objectives:

- To study the advanced concepts in abstract which have wider applications in Higher analysis, Theory of numbers, Geometry etc., with the inclusion of Ring theory, Field theory etc., in the syllabi.
- > To realize the importance of Sylow's theorem

To understand and the fundamental theorem of Galois theory which speak more about the relation between the order of a group, its subgroups, prime numbers, fixed field of automorphisms of a field and splitting field.

СО	Statement	Bloom's
		Taxonomy level
CO 1	explain about another counting principle and three parts of Sylow's theorem	U
CO 2	use the properties on Polynomial rings over the rational field an commutative rings	U
ÇO 3	explain about extension fields and roots of polynomials	U
CO 4	describe the elements of Galois theory	U
CO 5	classify the properties of modules and finite fields	U

Course Outcomes: On completion of the course the student will be able to

<u>U-Understanding</u>

Syllabus:

	15 115
Group Theory: Another Counting Principle – Sylow's Theorem - Direct Products. Chapter 2 (Sections $2.11 - 2.13$)	

Unit II

Ring Theory: Polynomial Rings - Polynomials over the Rational Field--Polynomial Rings over Commutative Rings. Chapter 3 (Sections 3.9 – 3.11)

Unit III

Fields: Extension Fields-– Roots of Polynomials- More about Roots. Chapter 5 (Sections 5.1, 5.3, 5.5)

Unit IV

13 hrs

13 hrs

13 hrs

13 hrs

Fields: The Elements of Galois Theory Chapter 5 (Section 5.6)

*Unit V

Vector Spaces and Modules: Modules -Selected Topics: Finite Fields Chapter 4 (Section 4.5) Chapter 7 (Section 7.1)

Book for study:

Unit	Name of the Book	Authors	Publisher
I -V	Topics in Algebra	I.N.Herstein	Wiley Eastern Limited, Second Edition, Reprint2015.

Books for Reference:

S.No.	Name of the Book	Authors	Publisher
1.	A first course in Abstract Algebra	John B.Fraleigh	Addison-Wesley Publishing Company, Tenth printing, 2003.
2.	Modern Algebra	Surjeet singh and Quazi Zameeruddin	Vikas Publishing house Private Limited, Third Edition, 2005.

M. Sc. Mathematics

Semester I

[For the students admitted from the academic year 2021-2022 onwards]

Course: Core II Real Analysis	Course Code: 21MM02
Semester: I	No. of Credits: 5
No. of hours :75	C:T:S : 52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial, S:Seminar)

Course Objectives:

- > To extend the mean value theorem and Taylor's formula for higher dimensional spaces which have many applications in optimization theory.
- > To provide the generalization of the study of derivatives to higher dimensional spaces.
- > To study the Lebesgue integrals and General Lebesgue measure essential to solve problems in modern mathematics.

Course Outcomes: On completion of this Course the student will be able to

······································			
CO	Statement	Bloom's	
		Taxonomy level	
CO1	represent derivatives in higher dimensional space and derive their properties	U	
CO2	intrepret the properties of measurable sets and measurable functions	А	
CO3	study lebesgue integral of bounded functions	U	
CO4	relate integrable functions and absolutely continuous functions with differentiation of an integral and functions of bounded variation respectively.	А	
CO5	derive the results connecting measure spaces, measurable functions and signed measure	А	

U–Understanding A-Apply

Syllabus:

Unit I 13hrs
Multivariable Differential calculus: Introduction - The directional derivative - Directional
derivatives and continuity - The total derivative - The total derivative expressed in terms of
partial derivatives - An application to complex-valued functions - The matrix of a linear
function - The Jacobian matrix - The chain rule - Matrix form of the chain rule - The Mean-
value theorem for differentiable functions - A sufficient condition for differentiability - A
sufficient condition for equality of mixed partial derivatives
Book I: Chapter 12 : Sections (12.1 – 12.13)

Unit II

Lebesgue Measure: Introduction - Outer measure - Measurable sets and Lebesgue measure - A nonmeasurable set - Measurable functions - Littlewood's three Principles. Book II: Chapter 3 : Sections (1 - 6)

Unit III

The Lebesgue Integral : The Riemann Integral – The Lebesgue integral of a bounded function over a set of finite measure - The integral of a nonnegative function - The general Lebesgue integral – Convergence in measure.

Book II: Chapter 4: Sections (1 - 5)

*Unit IV

Differentiation and Integration : Differentiation of monotone functions - Functions of bounded variation – Differentiation of an integral – Absolute Continuity. Book II : Chapter 5 : Sections(1 - 4)

Unit V	13 hrs
Measure and Integration : Measure spaces – Measurable functions – General	Convergence
Theorems – Signed measure – The Radon – Nikodym Theorem.	
Book II: Chapter 11 : Sections (1,2,4 - 6)	

Books for study:

Units	Name of the Book	Author	Publisher
Ι	Mathematical Analysis	Tom M.Apostol	Narosa Publishing House, New
			Delhi, Second Edition,
			Twentieth Reprint – 2002.
II-V	Real Analysis	H.L.Royden	PHI Learning Private Limited
			Third Edition, Reprint 2009.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Measure Theory and	G.de.Barra	Wiley Eastern Limited, 1981.
	Integration		

13 hrs

13 hrs

13 hrs

2	An Introduction to measure	Inder K.Rana	Narosa Publishing House, 2005.
	and Integration		

M.Sc. Mathematics

Semester II

[For the students admitted from the academic year 2021-2022 onwards]

Course: Core V Complex Analysis	Course Code: 21MM05
Semester: II	No. of Credits: 5
No. of hours :75	C:T:S:52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C:Contact hours, T:Tutorial, S:Seminar)

Course Objectives:

- > To study complex line integrals and Cauchy's Theorem
- To introduce series and product developments and impart knowledge in the advanced topics such as Normal families and Conformal mappings
- > To understand properties of Harmonic functions on a disc and concerned results
- ➢ To expose Elliptic functions
- \succ To help the students to take up research activities in the field of complex analysis.

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's Taxonomy level
CO 1	explain the applications of analytic functions in the evaluation complex integrals and in Cauchy's theorem	U
CO 2	represent meromorphic functions using partial fractions and factorization	U
ÇO 3	describe equicontinuity and normality of families of analytic functions	U
CO 4	explain the properties of harmonic and subharmonic functions	U
CO 5	describe the properties of elliptic functions	U

<u>U</u>-Understanding

Syllabus:

Unit I 13 hrs
Complex Integration: Fundamental Theorems: Line Integrals - Rectifiable Arcs - Line
Integrals as Functions of Arcs - Cauchy's Theorem for a Rectangle - Cauchy's Theorem in a
DiskHarmonic Functions: Definition and Basic Properties - The Mean -value Property -
Poisson's Formula – Schwarz's Theorem.

Chapter 4 Sections (1.1-1.5, 6.1-6.4)

Unit II

Series and Product Developments: Partial fractions and Factorization: Partial Fractions – Infinite Products–Canonical Products. Entire functions :Jensen's Formula . Chapter 5 Sections (2.1-2.4, 3.1)

Unit III

13 hrs

13 hrs

Series and Product Developments: Normal Families : Equicontinuity – Normality and Compactness – Arzela's Theorem – Families of Analytic Functions –The Classical Definition. Conformal mapping. Dirichlet's Problem: The Riemann Mapping Theorem: Statement and Proof-Boundary Behavior .

Chapter 5 Sections (5.1- 5.5) Chapter 6 Sections (1.1- 1.4)

Unit IV

Conformal Mapping. Dirichlet's Problem: A Closer Look at Harmonic Functions: Functions with the Mean-value Property – Harnack's Principle. The Dirichlet Problem: Subharmonic Functions – Solution of Dirichlet's Problem. Chapter 6 Sections (3.1, 3.2, 4.1, 4.2)

*Unit V

13 hrs

13 hrs

Elliptic Functions: Simply Periodic Functions: Representation by Exponentials – The Fourier Development – Functions of Finite Order. Doubly Periodic Functions: The Period Module – Unimodular Transformations – The Canonical Basis – General Properties of Elliptic Functions. The Weierstrass Theory: The Functions $\zeta(z)$ and $\sigma(z)$ - The Differential Equation. Chapter 7 Sections (1.1-1.3, 2.1-2.4, 3.1-3.3).

Book for study:

Unit	Name of the Book	Authors	Publisher
I-V	Complex Analysis	Lars. V.Ahlfors	McGraw-Hill Education India Private Limited,New Delhi, Third Edition,Second Reprint 2013.

Books for Reference:

S.No.	Name of the Book	Authors	Publisher
1.	Complex Analysis	Serge Lang	Springer- Verlag New York, Third Edition 1993.
2.	Real and Complex analysis	Walter Rudin,	McGraw Hill Book Company, 7 th reprint 2009.

M.Sc. Mathematics Semester II (For the students admitted from the academic year 2021-2022 onwards)

(1 of the statemes admitted if one the academic year	
Course: Core VII Special Functions	Course Code: 21MM07
Semester: II	No. of Credits: 4
No. of hours :75	C:T: S : 52:10:13
CIA Max. Marks: 50	ESE Max. Marks:50

(C:Contact hours, T:Tutorial, S:Seminar)

Course objective :

- To give a thorough knowledge of special functions such as Legendre Polynomials, Bessel's functions, Hermite's Polynomial, Legurre and Chebychev Polynomials
- To facilitates the students to take up the SLET and NET examinations with confidence.
- > To develop the mathematical models associated with real world problems.
- ➤ To the student will realize the importance of mathematics as a wonderful and power tools to better understand what he/she studies in other fields.

Course Outcomes: On completion of the Course the student will be able to

	•	
СО	Statement	Bloom's
		Taxonomy level
CO1	obtain the general solution of Legendre's Equation, describe its	А
	properties, derive recurrence, Christoffel's and Rodrigue's formula	
	and solve simple problems	
CO2	derive the general solution of Hermite Polynomials, discuss its	II
	properties, and solve simple problems	U
CO3	solve Bessel's Equation, derive generating function, understand its	Δ
	properties obtain recurrence formula and solve simple problems	Π
CO4	compute the general solution of Leguerre Polynomials, discuss its	TT
	properties, and solve simple problems	U
CO5	find the solution of Chebyshev Polynomials, derive generating	
	function, understand its properties and solve simple problems	A
TT TT 1		

<u>U</u>–Understanding A-Apply

Syllabus

•	
Unit I: 1	3 hrs
Legendre's Equation: Legendre's Equation-Solution of Legendre's Equation-Definition of	$f P_n(x)$
and $Q_n(x)$ – General solution of Legendre's Equation – To show that $P_n(x)$ is the co-efficient	ient of
h^n in the expansion of $(1-2xh+h^2)^{-1/2}$ – Laplace's Definite Integral for $P_n(x)$ – Ortho	ogonal
properties of Legendre's polynomials - Recurrence formulae - Beltrami's Results - Christ	offel's

Expansion - Christoffel's Summation formula – Rodrigue's formula – Even and odd functions. Chapter 2 (2.1-2.13).

Unit II

13 hrs

Bessel's Equation: Bessel's Equation(Def.) – Solution of Bessel's general differential equation – General solution of Bessel's Equation - Integration of Bessel's Equation in series for n = 0 – Definition of $J_n(x)$ – Recurrence formulae for $J_n(x)$ – Generating function $J_n(x)$ – A second solution of Bessel's equation.

Chapter 5.

*Unit III

13 hrs

Hermite Polynomials: Hermite Differential Equation – Solution of Hermite's equation – Hermite's Polynomials – Generating Function – Other forms for the Hermite Polynomial – To find first few Hermite polynomials – Orthogonal Properties of Hermite polynomials – Recurrence formulae for Hermite Polynomials. Chapter 6.

Unit IV

13 hrs

13 hrs

Laguerre Polynomials: Laguerre's Differential equation – Solution of Laguerre's equation – Laguerre Polynomials – Generating function – Other forms for the Laguerre Polynomials – To find first few Laguerre polynomials – Orthogonal property of Laguerre Polynomials – Recurrence formulae for Laguerre Polynomials – Associated Laguerre's Equation – If v is a solution of Laguerre's equation of order $n+\alpha$ then $\frac{d^{\alpha}v}{dx^{\alpha}}$ satisfies Laguerre's associated equation – Associated Laguerre's Polynomials (Def.) – Associated Laguerre's Polynomials $L_n^{\alpha}(x)$ – Generating function – Other forms for associated Laguerre Polynomial – Orthogonal property of the associated Laguerre Polynomials – Recurrence formulae for the associated Laguerre Polynomials. Chapter 7.

Unit V

Chebyshev Polynomials: Chebyshev's Differential Equation – Chebyshev Polynomials – To prove that $T_n(x)$ and $U_n(x)$ are independent solutions of Chebyshev's equation – Relation for $T_n(x)$ and $U_n(x)$ – To find first few $T_n(x)$ and $U_n(x)$ Polynomials – Generating Function – Orthogonal properties of Chebyshev polynomials – Recurrence formula for $T_n(x)$ and $U_n(x)$. Chapter 8.

Book for study:

Unit	Name of the Book	Authors	Publisher
I-V	Special Functions	J.N. Sharma and Dr.R.K.Gupta	Krishna Prakashan Mandir, Sixteenth edition 1992-93

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1.	Text book of Ordinary	S. G. Deo,	Tata McGraw-Hill Publishing
	Differential Equations	V.Lakshmikantan,V.	Company Ltd, New Delhi, Second
		Raghavendra	Edition,16 th Reprint – 2010
2.	Mathematical physics	Gupta B.D.	Vikas Publishing House, Fourth
			Edition, 2010
3.	Mathematical Physics	Sathyaprakash	Sultan Chand & Sons ,5th Revised
			edition, 2011

Entrepreneurship Courses

M.Sc. Mathematics

Semester I

(For the students admitted during the academic year 2021 – 2022 onwards)

Course: Core IV Advanced Operations Research	Course Code: 21MM04
Semester: I	No. of Credits: 4
No. of hours :75	C:T:S: 52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives: This course aims

- ➤ to introduce network models.
- to understand and apply dynamic programming techniques in any multistage situation to make series of decisions.
- > to specialize in inventory management, that forms the basis of supply chain management
- to specialize in queuing concepts that has wide applications like processor scheduling etc.
- ➢ to introduce non linear programming

Course Outcomes: On completion of the course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	determine the minimal spanning tree, shortest route and	٨
	maximal flow in a network.	A
CO2	compute the optimum solution of a multivariable process by	Δ
	decomposing into a single variable sub-problems.	А
CO3	obtain the optimum inventory policies for probabilistic	Δ
	inventory models.	Λ
CO4	determine the measures of performance of various queuing	Δ
	systems.	Λ
CO5	obtain optimum solutions of non linear programming	Δ
	problems.	11

Syllabus:

Unit I Network Models : Scope and Definition of Network models – Minimal Spanning Tree Algorithm - Shortest-Route Problem : Examples of the Shortest-Route Applications-Shortest-Route Algorithms-Maximal Flow Model.: Enumeration of cuts -Maximal-Flow Algorithm. Chapter 6(Sections 6.1, 6.2, 6.3(6.3.1, 6.3.2), 6.4.(6.4.1, 6.4.2)).

Unit II

Deterministic Dynamic Programming : Recursive Nature of Computations in DP - Forward and Backward Recursion - Selected DP Applications : Knapsack / Fly-Away / Cargo-Loading Model - Work-Force Size Model - Equipment Replacement Model - Problem of Dimensionality. Chapter 10 (Sections 10.1 – 10.3 (10.3.1 – 10.3.3), 10.4).

Unit III

Probabilistic Inventory Models: Continuous Review Models - Single-Period Models.-Multiperiod Model.

Chapter 14(Sections 14.1-14.3)

*Unit IV

Queuing Systems : Elements of a Queuing Model – Role of Exponential Distribution – Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions) – Generalized Poisson Queuing Model - Specialized Poisson Queues: Steady State Measures of Performance – Single - Server Models - Multiple- Server models((M/M/c): $(GD/\infty/\infty)$ and $(M/M/c):(GD/N/\infty), c \leq N$). Chapter 15 (Sections 15.2 - 15.6(15.6.1 - 15.6.3)).

Unit V

13 hrs

Classical Optimization Theory: Unconstrained Problems: Necessary and Sufficient Conditions Constrained Problems : Equality Constraints - Inequality Constraints - Karush-Kuhn-Tucker (KKT) Conditions.

Chapter 18(Sections 18.1(18.1.1), 18.2(18.2.1,18.2.2))

Book for study:

Unit	Name of the Book	Author	Publisher
I – V	Operations Research – An Introduction	Hamdy A.Taha	Pearson Education Inc Limited, Eighth Edition, 2008.

Books for Reference:

13 hrs

13 hrs

13 hrs

13 hrs

S.No	Name of the Book	Authors	Publisher
1	Introduction to Operations Research	Frederick S. Hillier, Gerald J.Lieberman	McGraw-Hill Book Company, Eighth Edition 2007
2	Operations Research- Applications and Algorithms	Wayne.L.Winston	Thomson Asia.Pvt Ltd, Fourth edition, 2003.
3	Operations Research- Principles and Applications	G.Srinivasan	PHI Learning Private Limited,Second printing, 2008

M. Sc. Mathematics Semester II

[For the students admitted from the academic year 2021-2022 onwards]

Course : Core VIII Numerical Analysis	Course Code: 21MM08
Semester: II	No. of Credits: 4
No. of hours :90	C:T:S: 62:12:16
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T:Tutorial, S:Seminar)

Course Objectives:

- To expose the students to various numerical methods available for solving algebraic and differential equations.
- > To help the students to develop their skills in numerical computation.
- > To expose the students to problems in physical and management sciences and in engineering.

Course Outcomes: On completion of this course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	obtain the approximation of a given function using chebyshev polynomial and its rational form	А
CO2	solve ordinary differential equations	А
CO3	solve boundary value problems	А
CO4	solve partial differential equations such as heat equation, wave equation etc.,	А
CO5	use finite element methods to solve boundary value problems.	А

A-Apply

Syllabus:

Unit I	16 hrs
Approximation of Functions	: Chebyshev Polynomials - Approximation with Rational Functions
- Economized Power Series.	

Book I: Chapter 4 : Sections (4.1 - 4.3).

Unit II

Numerical Solution of Ordinary Differential Equations: The Spring-Mass problem-A variation-The Taylor-Series Method- Euler and Modified Euler Methods- Runge-Kutta Methods-Multistep Methods- Milne's Method-The Adams-Moulton Method-Convergence Criteria - Systems of Equations and Higher-Order Equations.

Chapter 6 : Sections (6.1 - 6.9).

Unit III

Boundary-Value Problems : The Shooting Method – Solution through a set of Equations – Characteristic –Value problems –Derivative Boundary conditions Chapter 7: Sections (7.2 - 7.5).

*Unit IV

16 hrs

15 hrs

Boundary-Value Problems : Temperature Distribution in a slab - Solving for the Temperatures in a slab Parabolic and Hyperbolic Partial-Differential Equations: Types of Partial Differential Equations-The Heat Equation and the Wave Equation-Solution Techniques for the Heat Equation in One Dimension- Solving the Vibrating String Problem. Chapter 7: Sections (7.6 - 7.7), Chapter 8 : Sections(8.1 - 8.4).

Unit V

The Finite Element Method : The Rayleigh-Ritz Method-The Collocation and Galerkin Methods – Finite Elements for Ordinary-Differential Equations – Finite Elements for Elliptic Partial-Differential Equations. Chapter 9: Sections (9.1 - 9.4).

Book for study:

Units	Name of the Book	Author	Publisher
I-V	Applied Numerical	Curtis F.Gerald, Patrick	Pearson Education, Sixth
	Analysis	O.Wheatley	Edition, Fourth Indian
			Reprint – 2005.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Numerical methods for Scientific and engineering Computation	M.K.Jain, S.R.K.Iyengar and R.K. Jain	New Age International (P) Limited, Fourth Edition, Reprint 2004.
2	Numerical Methods Using MATLAB	John. H.Mathews, Kurtis D. Fink	PHI Learning Private Limited, New Delhi, Fourth

15 hrs

16 hrs
13 hrs

Skill Development Courses

M.Sc. Mathematics Semester – I

[For the students admitted from the academic year 2021-2022 onwards]

Course: Core III Ordinary Differential Equations	Course Code: 21MM03
Semester: I	No. of Credits: 4
No. of hours :75	C:T:S: 52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial, S:Seminar)

Course Objectives: This course aims

- > To formulate differential equations related to real world problems
- > To study various types of equations and the methods of solving them.
- > To study the qualitative properties of solutions.

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO1	solve the higher order linear differential equations	А
CO2	evaluate the second order linear equations and apply the Legendre	А
	and Bessel's equations to find the solutions in Power series.	
CO3	solve the non-homogeneous linear equations with constant	А
	co-efficients and find the solutions	
CO4	compute solution using Picard's theorem and find the existence	А
	and uniqueness of solutions of system.	
CO5	solve boundary value problem and applications of boundary value	A
	problem	

<u>A-Apply</u>

Syllabus:

Unit I13 hrsLinear Differential Equations of Higher Order: Introduction – Higher Order Equations – AModelling Problem – Linear Independence – Equations with Constant coefficients – Equationswith Variable coefficients – Wronskian – Variation of Parameters – Some Standard Methods –Method of Laplace Transforms.Chapter 2: Sections (2.1 – 2.10)

Unit II

Solutions in Power Series: Introduction – Second Order Linear Equations with Ordinary Points – Legendre Equation and Legendre Polynomials – Second Order Equation with Regular Singular Point – Properties of Bessel Functions. Chapter 3: Sections(3.1 - 3.5) *Unit III

Systems of Linear Differential Equations: Introduction – Systems of First Order Equations – Model for Arms Competition between Two Nations – Existence and Uniqueness Theorem – Fundamental Matrix – Non-homogeneous Linear systems – Linear systems with Constant coefficients – Linear systems with Periodic Coefficients. Chapter 4: Sections (4.1 - 4.8)

Unit IV

Unit V

13hrs

Existence and Uniqueness of Solutions: Introduction – Preliminaries – Successive Approximations – Picard's Theorem – Some Examples – Continuation and Dependence on Initial Conditions – Existence of Solutions in the Large – Existence and Uniqueness of Solutions of Systems – Fixed point Method.

Chapter 5: Sections (5.1 - 5.9)

13 hrs

Boundary Value Problems: Introduction – Sturm – Liouville Problem – Green's Function – Application of Boundary Value Problems(BVP) – Picard's Theorem. Chapter 7: Sections (7.1 - 7.5)

Book for study:

	•		
Unit	Name of the Book	Authors	Publisher
I - V	Text book of Ordinary Differential Equations	S. G. Deo, V.Lakshmikantham, V. Raghavendra	Tata McGraw-Hill Education Private Ltd, New Delhi, Second Edition,18 th Reprint – 2012

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	An Introduction to Ordinary	Earl.A.Coddington	Prentice Hall of India
	Differential Equations		Pvt., Ltd., - 1987
2	Ordinary Differential Equations	Robert H. Martin. Jr	McGraw-Hill Book
			Company, Second
			Printing – 1985.

M.Sc. Mathematics Semester I (For students admitted from the academic year 2021-2022 onwards)

Course: Elective I Differential Geometry	Course Code: 21MME1
Semester: I	No. of Credits: 4
No. of hours :75	C:T: S: 52:10:13
CIA Max. Marks: 50	ESE Max. Marks: 50

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

- > To introduce trihedren, osculating plane and torsion in space
- To provide the knowledge of properties of curves including Frenet, Serret formulae and their applications
- > To introduce fundamental forms, developable surfaces and Dupins indicatrix.
- > To provide a strong grounding in the fundamental equation of surfaces and their properties

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's
		Taxonomy level
CO 1	determine osculating plane, torsion in space.	U
CO 2	derive the natural equation of a curve and their properties.	U
CO 3	determine fundamental forms and corresponding developable surfaces.	А
CO 4	determine the Dupins indicatrix using the fundamental forms.	А
CO 5	determine the fundamental equation of surfaces and their properties	U

<u>U-Understanding A-Apply</u>

Syllabus:

Unit I	13 hrs
Curves: Analytic representation - Arc length, tangent - Osculating plane - Curvature -	Torsion -
Formulas of Frenet.	
Chapter 1 (Sections 1.1 - 1.6)	

~ ~ ~ ~ ~ ~ ~	Unit	Π
---------------	------	---

Curves: Contact – Natural Equations – Helices – General solution of the natural Equations.-Evolutes and involutes.

Chapter 1 (Sections 1.7 - 1.11)

*Unit III

Elementary theory of surfaces: Analytic representation – First fundamental form –Normal, tangent plane - Developable surfaces. Chapter 2 (Sections 2.1 - 2.4)

Unit IV

13 hrs

13 hrs

13 hrs

Elementary theory of surfaces: Second fundamental form – Meusnier's theorem – Euler's theorem – Dupin's indicatrix – Some surfaces. The fundamental equations: Gauss - The equations of Gauss Weingarten. Chapter 2 (Sections 2.5 - 2.8) Chapter 3 (Sections 3.1 - 3.2)

Unit V

13 hrs

The fundamental equations: The theorem of Gauss and the equations of Codazzi – Curvilinear coordinates in space – Some applications of the Gauss and the Codazzi equations – The

fundamental theorem of surface theory. Geometry of a surface: Geodesic (tangential) curvature - Geodesics.

Chapter 3 (Sections 3.3 - 3.6) Chapter 4 (Sections 4.1 - 4.2)

Book for study:

Units	Name of the Book	Author	Publisher
I – V	Lectures on Classical Differential Geometry	Dirk J. Struik	Addison- Wesley Publishing company Inc., Second Edition, 1961.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Three dimensional	Dr. P.P.Gupta and	Pragat Prakashan, Meerut, Tenth
	Differential Geometry	G.S.Malik,	Edition, 2001.
2	Differential Geometry	Mittal and Agarwal	Krishna Prakashan
			Mandir, Twenty fifth Edition,
			1997.
3	Elementary Differential	Christian Bär	Cambridge University Press,
	Geometry		2010.
4	Differential Geometry of	Manfredo P. Dto	Revised and updated 2nd edition,
	Curves & Surfaces	Carmo	Dover Publications, 2016.

M.Sc. Mathematics

Semester II

(For the students admitted from the academic year 2021-2022 onwards)

Course: Core VI Partial Differential Equations	Course Code: 21MM06
Semester: II	No. of Credits: 4
No. of hours :90	C:T:S: 63:12:15
CIA Max. Marks: 50	ESE Max. Marks:50

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

- To provide an exposure to the various concepts of partial differential equations with the underlying principles.
- To comprehend the categories of partial differential equations, their characteristics and solutions.
- To learn different techniques of solving partial differential equations and there by interpret the solutions.
- To help the students to understand the wide range of applications with ample illustrations.

Course Outcomes: On completion of the course the student will be able to

СО	Statement	Bloom's Taxonomy
		level

CO1	use partial derivative techniques to predict the behavior of vibrating string, membrane and heat conduction on solids and classify them.	А
CO2	solve IBVP such as Cauchy's problem, Goursat problem and wave equation by the method of characteristics.	А
CO3	solve IBVP using the method of separation of variables.	А
CO4	obtain the solution of the Boundary value problems using Fourier integrals.	А
CO5	obtain the solution of the Boundary value problems in terms of Greens function.	А

<u>A-Apply</u>

Syllabus:

Unit I

Mathematical Models: Classical Equations – The Vibrating String – The Vibrating Membrane-Conduction of heat in solids-The Gravitational Potential. Classification of Second – Order Linear Equations: Second – Order equations in Two Independent Variables – Canonical forms – Equations with Constant Coefficients – General Solutions – Summary and Further Simplification – Exercises.

Chapter 3: Sections (3.1 - 3.3, 3.5, 3.6) Chapter 4: Sections (4.1 - 4.6)

Unit II 16 hrs The Cauchy Problem and Wave Equations : The Cauchy Problem – Homogeneous Wave Equations – Initial Boundary – Value Problems – Equations with Non homogeneous Boundary Conditions – Vibration of Finite String with Fixed Ends – Non homogeneous Wave Equations – Solution of the Goursat Problem – Exercises. Chapter 5: Sections (5.1, 5.3 – 5.7, 5.9, 5.12)

^{*}Unit III

Method of Separation of Variables: Introduction – Separation of Variables – The Vibrating String Problem – Existence and Uniqueness of Solution of the Vibrating String Problem – The Heat Conduction Problem – Existence and Uniqueness of Solution of the Heat Conduction Problem – The Laplace and Beam Equations – Nonhomogeneous Problems – Exercises. Chapter 7: Sections (7.1 - 7.9)

Unit IV

16 hrs

15 hrs

16 hrs

Boundary – Value Problems and Applications : Boundary –Value Problems – Maximum and Minimum Principles – Uniqueness and Continuity Theorems –Dirichlet Problem for a Circle – Dirichlet Problem for a Circular Annulus – Neumann Problem for a Circle – Dirichlet Problem for a Rectangle – Dirichlet Problem Involving the Poisson Equation –The Neumann Problem for a Rectangle – Exercises. Chapter 9: Sections (9.1 – 9.10)

Unit V

15 hrs

Green's Functions and Boundary-Value Problems : Introduction – The Dirac Delta Function – Properties of Green's Functions – Method of Green's Functions – Dirichlet's Problem for the Laplace Operator – Dirichlet's Problem for the Helmholtz Operator – Method of Images – Method of Eigen functions Chapter 11: Sections (11.1 – 11.8)

Book for study:

Unit	Name of the Book	Authors	Publisher
I-V	Linear Partial Differential Equations	Tyn Myint-U	Birkhauser, Fourth Edition,
	for Scientists and Engineers.	Lokenath Debnath	Third Indian Reprint 2013.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Elements of Partial Differential	Ian.N.Sneddon	Dover Publications, 1 st Edition-
	Equations		2006.
2	Differential Equations for	J.B.Doshi	Narosa Publishing House, 2010.
	Scientists and Engineers		
3	Introduction to Partial	K.Sankara Rao	PHI Publications, 3 rd Edition-2010.
	Differential Equations		

M.Sc. Mathematics

Semester II

[For the students admitted from the academic year 2021-2022 onwards]

Course: Elective II Stochastic Processes	Course Code: 21MME4
Semester: II	No. of Credits: 4
No. of hours : 90	C:T: 63:12:15
CIA Max. Marks: 50	ESE Max. Marks:50

(C: Contact hours, T:Tutorial, S: Seminar)

Course Objectives:

- > To describe a Markov chain and its transition matrix
- > To determine limit probabilities in Markov chains after an infinitely long period.
- To derive differential equations for time continuous Markov processes with a discrete state space.
- To classify a stochastic process according to whether it operates in continuous or discrete time and whether it has a continuous or a discrete state space, and give examples of each type process.
- > To solve differential equations for distributions and expectations in time continuous processes and determine corresponding limit distributions.

Course Outcomes: On completion of the course the student will be able to

CO	Statement	Bloom's
		Taxonomy level
CO1	explain the stochastic processes, Markov chain and stationary distributions.	U
CO2	describe the Poisson Process	U
ÇO3	calculate the time distribution of a Markov process.	А

CO4	classify the delayed and equilibrium Renewal Processes	U
CO5	determine the regenerative stochastic process	А

U-Understanding A-Apply

Syllabus:

Unit I 16 hrs
Stochastic Processes: An Introduction. Markov Chains: Definitions and Examples -Higher
Transition Probabilities - Generalisation of Independent Bernoulli Trails : Sequence of Chain -
Dependent Trails - Classification of States and Chains - Determination of Higher Transition
Probabilities – Stability of a Markov System- Graph Theoretic Approach.
Chapter 1(Section 1.5), Chapter 2 (Sections 2.1- 2.7).

Unit II

hrs

Markov Processes with Discrete State Space - Poisson Process and its Extensions: Poisson Process – Poisson Process and Related Distributions – Generalisations of Poisson Process – Birth and Death Process.

Chapter 3(Sections 3.1-3.4).

Unit III

Markov Processes with Continuous State Space: Introduction - Brownian Motion - Wiener Process - Differential Equations for A Weiner Process - Kolmogorov Equations - First Passage Time Distribution for Weiner Process - Ornstein - Uhlenbeck Process. Chapter 4(Sections 4.1 - 4.6).

*Unit IV

Renewal Processes and Theory: Renewal Process - Renewal Process in Continuous Time -Renewal Equation - Stopping Time : Wald's Equation - Renewal Theorems - Delayed and equilibrium Renewal Processes. Chapter 6(Sections 6.1 - 6.6).

Unit V

Renewal Processes and Theory: Residual and Excess Lifetimes - Renewal Reward(Cumulative Renewal) Process- Alternating (or Two -Stage) Renewal Process - Regenerative Stochastic Processes: Existence of Limits - Regenerative Inventory System. Chapter 6(Sections 6.7 - 6.11).

Book for study:

Unit	Name of the Book	Author	Publisher
I - V	Stochastic Processes	J.Medhi	New Age International (P)
			Limited, Publishers, New Delhi, Reprint 2015.

Books for Reference:

S.No	Name of the Book	Authors	Publisher
1	Introduction to	Tapas Kumar	Narosa Publishing House,Pvt
	Stochastic Processes	Chandra,Sreela	Ltd,2018

15 hrs

16 hrs

16 hrs

15

		Gangopadhyay	
2	Stochastic Processes	Robert G.Gallager	Cambridge University Press,
	(Theory For Applications)		New Delhi, First South Asia
			Edition,2016

Curriculum Design

SRI G.V.G VISALAKSHI COLLEGE FOR WOMEN (AUTONOMOUS)

Affiliated to Bharathiar University

Department of Mathematics

M.Sc Mathematics

Scheme of Examination-CBCS Pattern

[For the students admitted from the academic year 2017 -2018 onwards]

Sem	Course	Course Title	Ins.		Examination			
	Code		Hrs/		OT 4	DOD		Credits
			Week	Dur. Hrs	CIA Marks	ESE Marks	Total Marks	
	17MM01	Core I : Algebra	6	3	25	75	100	4
	17MM02	Core II : Real Analysis	6	3	25	75	100	4
	17MM03	Core III : Ordinary Differential Equations	6	3	25	75	100	4
Ι	17MM04	Core IV : Optimization Techniques I	5	3	25	75	100	4
	17MME1/ 17MME2	Elective I: Number theory / Differential Geometry	6	3	25	75	100	4
	17MM05	Core V : Complex Analysis	5	3	25	75	100	4
	17MM06	Core VI : Partial Differential Equations	6	3	25	75	100	4
	17MM07	Core VII : Numerical Analysis	6	3	25	75	100	4
	17MM08	Core VIII :Optimization Techniques II	5	3	25	75	100	4
II	17MME3/ 17MME4	Elective II : Control Theory/ Stochastic differential Equations	6	3	25	75	100	4
	17MGCS	Cyber Security	2	2	-	-	Grade	Grade
	17MMA1/ 17MMA2	Advanced Learners Course I: LaTeX Practicals / Statistical Methods	-	-	-	100	100	4*
	17MM09	Core IX : Topology	5	3	25	75	100	4
	17MM10	Core X : Classical Mechanics	5	3	25	75	100	4
III	17MM11	Core XI : Programming with C++	3	3	25	75	100	4
	17MMCP	Programming with C++ Practical	3	3	40	60	100	4
	17MM12	Core XII : Mathematical Modelling	5	3	25	75	100	4
	17MME5/ 17MME6	Elective III : Graph Theory / Fuzzy Topology	6	3	25	75	100	4
	17MMIS	Internship /Summer School Courses / Sports Training	-	-	50	-	50	2
	17MMPV	Project and Viva-Voce	3	-	-	-	-	-

	17MM13	Core XIII : Mathematical Methods	6	3	25	75	100	4
	17MM14	Core XIV : Functional Analysis	6	3	25	75	100	4
	17MM15	Core XV : Fluid Dynamics	6	3	25	75	100	4
IV	17MME7/ 17MME8	Elective IV : Special Functions / Operator Theory	6	3	25	75	100	4
	17MMPV	Project and Viva-Voce	6	-	100	100	200	8
	17MMA3/ 17MMA4	Advanced Learners Course II : Mathematical Biology / Subject viva voce	-	-	-	100	100	4*
Total						2250	90	

*Starred credits are treated as additional credits (Optional)

Employability Courses

M.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core IX Topology	Course Code: 17MM09
Semester: III	No. of Credits: 4
No. of hours :75(Total hours)	C:T: S: 52:10:13
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T: Tutorial S: Seminar)

Course Objectives:

The objectives of the course are

- \succ to understand modern pure mathematics.
- ➤ to make use of ideas and methods in Topology to analysis and Geometry.
- ➢ to lay foundation for further study in Algebraic Topology.

Syllabus: Unit I:

13 hrs

Topological Spaces and Continuous Functions: Topological spaces – Basis for a Topology – The Order Topology – The Product Topology on X x Y – The Subspace Topology – Closed Sets and Limit Points – Continuous Functions. Chapter 2 (Sections 12-18)

Unit II:

13 hrs

Topological Spaces and Continuous Functions: The Metric Topology. Connectedness and Compactness : Connected Spaces – Connected Subspaces of the Real Line – Components and Local Connectedness. Chapter 2 (Sections 20) Chapter 3 (Sections 23-25)

*Unit III:

Connectedness and Compactness: Compact Spaces – Compact Subspaces of the Real Line – Limit point Compactness. Countability and Separation Axioms: The Countability Axioms – The Separation Axioms – Normal Spaces.

Chapter 3 (Sections 26 - 28) Chapter 4 (Sections 30 - 32)

Unit IV:

Countability and Separation Axioms: The Urysohn Lemma – The Urysohn Metrization Theorem – The Tietze Extension Theorem. The Tychonoff Theorem: The Tychonoff Theorem – The Stone-Cech Compactification. Chapter 4 (Sections 33 - 35) Chapter 5 (Sections 37 - 38)

Unit V:

13 hrs

Metrization Theorems and Paracompactness: Local finiteness – The Nagata - Smirnov Metrization Theorem – Paracompactness – The Smirnov Metrization Theorem. Chapter 6 (Sections 39 – 42)

Note : Exclude supplementary exercises.

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition	
I-V	Topology	James R. Munkres	Pearson New International Edition, Second	
			Edition, 2015	

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	Topology	J. Dugundji	Universial Book Stall, New Dehi, 1975.
2	Topology and	George F.Simmons	McGraw Hill Book Company, 13th Reprint
	Modern Analysis		2010

M.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core X – Classical Mechanics	Course Code:17MM10
Semester: III	No. of Credits: 4
No. of hours :75(Total hours)	C:T: S: 52:10:13
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T:Tutorial, S: Seminar)

Course Objectives:

The objectives of this course are

- ➢ to acquire knowledge in solving Mechanical problems.
- ▶ to become acquainted with Mathematical technologies and procedures which are

13 hrs

useful in other fields of physics.

to understand and appreciate the working of objects like motion of planets, motion \geq of rockets etc.,

Syllabus:

Unit I: 13 hrs Introductory Concepts: The Mechanical System - Generalized Co-ordinates - Constraints -Virtual Work – Energy and Momentum.

Chapter 1 : (Sections 1.1 - 1.5)

Unit II

Lagrange's Equations: Derivation of Lagrange's Equations - Examples - Integrals of the Motion. Chapter 2 : (Sections 2.1 - 2.3)

Unit III

13 hrs

13 hrs

Hamilton's Equations: Hamilton's principle - Hamilton's Equations - Other variational Principles - Phase space. Chapter 4: (Sections 4.1 - 4.4)

*Unit IV

13 hrs Hamilton - Jacobi theory: Hamilton's Principal function - The Hamilton Jacobi equation -Separability.

Chapter 5 : (Sections 5.1 - 5.3)

U	nit V								13 hrs
	Canonical	Transformations:	Differential	forms	and	generating	functions	_	Special
	transformat	tions – Lagrange an	d Poisson bra	ckets.					
	Chapter 6 :	(Sections $6.1 - 6.3$)						

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I- V	Classical Dynamics	Donald T.	Prentice Hall of India Private Ltd, New Delhi
		Greenwood	1985.

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	Classical Mechanics	Herbert Goldstein	Second Edition – Addison Wesley
			Publishing company, 1988.

2	John L. Synge and Byron A.	Principles of	International Student Edition -
	Griffith	Mechanics	McGraw Hill – Koga Kusha Ltd,
			1970.

M.Sc Mathematics Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Elective III - Graph Theory	Course Code:17MME5
Semester: III	No. of Credits: 4
No. of hours :90 (Total hours)	C:T: S: 62:12:16
CIA Max. Marks: 25	ESE Max. Marks:75

(C:Contact hours, T:Tutorial,S:Seminar)

Course Objectives:

The objectives of this course are

- \blacktriangleright to familiarize the various concepts in Graph Theory
- > to apply the knowledge wherever it is possible.

Syllabus:

Unit I:

Graphs and Subgraphs : Graphs and Simple Graphs - Graph Isomorphism-The Incidence and Adjacency Matrices- Sub Graphs-Vertex Degrees-Paths and Connection - Cycles. Trees:Trees - Cut Edges and Bonds - Cut Vertices – Cayley's formula. Chapter 1(Sections 1.1-1.7), Chapter 2(Sections 2.1-2.4)

Unit II

Connectivity: Connectivity-Blocks. Euler Tours and Hamilton Cycles: Euler Tours -Hamilton Cycles.

Chapter 3(Sections 3.1, 3.2) Chapter 4(Sections 4.1, 4.2)

*Unit III

16 hrs

Matchings: Matchings - Matchings and Coverings in Bipartite Graphs – Perfect Matching. Edge Colourings: Edge Chromatic Number - Vizing's Theorem. Chapter 5(Sections 5.1-5.3) Chapter 6(Sections 6.1,6.2)

Unit IV

Independent Sets and Cliques: Independent Sets - Ramsey's Theorem.Vertex Colorings: Chromatic Number - Brook's Theorem - Hajos Conjecture-Chromatic Polynomials. Chapter 7(Sections 7.1,7.2) Chapter 8(Sections 8.1-8.4)

Unit V

Planar Graphs: Plane and planar graphs-Dual graphs - Euler's formula – Bridges - The five Color theorem and four Color conjecture – Non Hamiltonian planar graphs. Chapter 9(Sections 9.1-9.4, 9.6 & 9.7)

16 hrs

15hrs

15 hrs

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Graph theory with	J.A. Bondy and	MacMillan London, First Edition ,1976.
	Applications	U.S.R. Murty	

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	A First Look at Graph	J.Clark and D.A.	Allied Publishers New Delhi 1995
	Theory	Holton	
2	Graph Theory	Frank. Harary	Narosa Publishing House, Tenth
			Reprint,2001.
3	Graph Theory Modelling,	Geir Agnarsson,	Pearson, Third Impression 2011.
	Applications and Algorithms	Raymond Greenlaw	
4	Graph Theory with	Narsingh Deo	Prentice Hall of India 2005.
	Applications to Engineering		
	and Computer Science		

M.Sc Mathematics

Semester IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

Course: Core XV – Fluid Dynamics	Course Code:17MM15
Semester: IV	No. of Credits: 4
No. of hours :90(Total hours)	C:T: S: 62:12:16
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

The objectives of this course are

- to understand the general properties of fluid motion such as continuity, pressure, dynamical equation, energy, vorticity etc.,
- \blacktriangleright to know the tensor methods applied to the flow of viscous fluids.
- ▶ to know the outline of the theory of two dimensional laminar flow in boundary layer
- \blacktriangleright to apply the aerofoil theory in aerodynamics.

Syllabus:

Unit I: 16 hrs
Bernoulli's equation: Introductory notions – Physical dimensions – Velocity – Stream lines
and paths of the particles – Stream tubes and filaments – Density – Pressure. Equations of
motion: Differentiation with respect to the time – The equation of continuity – Boundary
conditions (both kinematical and Physical) – Rate of change of linear momentum – The
equation of motion of an inviscid fluid.
Book 1: Chapter I (Sections 1.0-1.3) Chapter III (Sections 3.10-3.31, 3.40, 3.41)

Unit II

Equations of motion: Euler's momentum theorem – Conservative forces – Lagrangian form of the equation of motion – Steady motion – The energy equation – Rate of change of circulation – Vortex motion – Permanence of Vorticity. Book 1: Chapter III (Sections 3.42-3.53)

Unit III

Two dimensional motion: Introduction – Two dimensional functions – Basic singularities – Method of images – Conformal transformation – The Aerofoil. Book 2: Chapter III (Sections 3.1-3.3, 3.5-3.7)

Unit IV

Dynamics of real fluids: The equations of motion for viscous flow – Some exact solutions of the Navier-Stokes equations.

Book 2: Chapter V (Sections 5.2,5.3.1-5.3.3)

*Unit V

The laminar boundary layer in incompressible flow: Introduction – The boundary layer equations – Analytic solutions of the boundary layer equations.

Book 2: Chapter VI (Sections 6.1-6.3)

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I -II	Theoretical	L.M.Milne –	Dover Publications, New york, Fifth Edition,
	Hydrodynamics	Thomson	1996.
III- V	Modern Fluid	N.Curle and	Volume I, D.Van Nostrand Co., London,
	Dynamics	H.J.Davies	1968.

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1.	Fundamentals of	S.W.Yuan	Prentice Hall of India, Pvt. Ltd., 1988.
	fluid Mechanics		
2.	Fluid Mechanics	John F. Douglas, Janusz	Pearson Education Ltd., Fourth
		M.Gasiorek and John A.	Edition, 2002.
		Swaffield	

M.Sc Mathematics

Semester IV

(For the students admitted during the academic year 2017 – 2018 and onwards)

15 hrs

15 hrs

16 hrs

Course: Elective IV– Special Functions	Course Code:17MME7
Semester: III	No. of Credits: 4
No. of hours :90(Total hours)	C:T: S: 62:12:16
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

The objectives of this course are

- to give a thorough knowledge of special functions such as Legendre Polynomials, Bessel's functions, Hermite's Polynomial, Legurre and Chebychev Polynomials
- to facilitates the students to take up the SLET and NET examinations with confidence.

Syllabus:

Unit I:16 hrs
Legendre's Equation: Legendre's Equation-Solution of Legendre's Equation-Definition of
$P_n(x)$ and $Q_n(x)$ – General solution of Legendre's Equation – To show the $P_n(x)$ is the
co-efficient of h^n in the expansion of $(1-2xh+h^2)^{-1/2}$ – Laplace's definite integral for $P_n(x)$ –
Orthogonal properties of Legendre's polynomials – Recurrence formulae – Beltrami's results
– Christoffel's Expansion - Christoffel's summation formula – Rodrigue's formula – Even
and odd functions.
Chapter 2 $(2, 1-2, 13)$

Unit II	15 hrs
Bessel's Equation .	
Chapter 5.	

16 hrs
-

Unit IV	16 hrs
Laguerre Polynomials.	
Chapter 7.	

Unit V	15 hrs
Chebyshev Polynomials .	
Chapter 8	

Book for study:

UnitName of the BookAuthors	Publishers with Edition
-----------------------------	-------------------------

I -V	Special Functions	J.N. Sharma and	Krishna Prakashan Mandir ,Sixteenth
		Dr.R.K.Gupta	edition 1992-93.

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1.	Text book of Ordinary	S. G. Deo,	Tata McGraw-Hill Publishing Company
	Differential Equations	V.Lakshmikantan, V.	Ltd, New Delhi,Second
		Raghavendra	Edition,16 th Reprint – 2010.
2.	Mathematical Physics	Gupta B.D	Vikas Publishing House, Fourth Edition, 2010
3.	Mathematical Physics	Sathyaprakash	Sultan Chand & Sons ,5 th revised
			edition,2011

Skill Development Courses

M.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core XI - Programming With C++	Course Code: 17MM11
Semester: III	No. of Credits: 4
No. of hours :45(Total hours)	C:T:S:30:6:9
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T:Tutorial, S: Seminar)

Course Objectives:

The objectives of this course are to

 \blacktriangleright empower the software developing skills of the student.

▶ enhance the ability of logical thinking.

 \triangleright solve any complex real life problems with ease using computers.

Syllabus:

Unit I: 9 hrs	
Tokens, Expressions and Control Structures: Introduction-Tokens - Keywords -Identifiers	
and Constants - Basic Data Types - User-Defined Data Types. Derived Data types -	
Symbolic Constants - Type Compatibility –Declaration of variables – Dynamic	
Initialization of Variables - Reference Variables - Operators in C++ - Scope Resolution	n
Operator - Member Dereferencing Operators - Memory Management Operators -	
Manipulators - Type Cast Operator - Expressions and their Types - Special Assignmen	t
Expressions – Implicit Conversions – Operator Overloading – Operator Precedence – Contro	ol
Structures.	
Chapter 3: (Sections $3.1 - 3.24$).	

Unit II:

Functions in C++: Introduction – The Main Function – Function prototyping – Call by Reference – Return by Reference – Inline functions – Default Arguments – const Arguments Function overloading – Friend and Virtual Functions – Math Library Functions. Classes and Objects: Introduction – C Structures Revisited – Specifying a Class – Defining Member Functions – A C++ Program with Class – Making an Outside Function Inline – Nesting of Member Functions – Private Member Functions– Arrays within a Class – Memory Allocation for Objects – Static Data Members – Static Member Functions – Arrays of Objects – Objects as Function Arguments – Friendly Functions – Returning Objects – const Member functions – Pointers to Members – Local classes. Chapter 4 (Sections 4.1 - 4.11) Chapter 5 (Sections 5.1 - 5.19)

*Unit III:

9 hrs

Constructors and Destructors : Introduction - Constructors – Parameterized Constructors – Multiple Constructors in a Class - Constructors with Default Arguments – Dynamic Initialization of Objects – Copy Constructor – Dynamic Constructors –Constructing Two-Dimensional Arrays – const Objects - Destructors. Operator Overloading and Type Conversions: Introduction – Defining Operator Overloading - Overloading Unary Operators –Overloading Binary Operators – Overloading Binary Operators using Friends- Manipulation of Strings Using Operators– Rules for Overloading Operators Chapter 6(Sections 6.1 - 6.11) Chapter 7(Sections 7.1 - 7.7)

Unit IV:

9 hrs

Inheritance: Extending Classes: Introduction – Defining Derived Classes –Single Inheritance – Making a Private Member Inheritable–Multilevel Inheritance –Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance – Virtual Base Classes – Abstract Classes – Constructors in Derived Classes – Member Classes:Nesting of Classes. Pointers, Virtual Functions and Polymorphism: Introduction – Pointers to Objects – this Pointer – Pointers to Derived Classes – Virtual Functions – Pure Virtual Functions Chapter 8(Sections 8.1 – 8.12) Chapter 9 (Sections 9.1 - 9.7)

Unit V:

9 hrs

Working with Files : Introduction – Classes for File Stream Operations – Opening and Closing a File – Detecting end-of-file – More about Open(): File Modes – File Pointers and their Manipulations - Sequential Input and Output Operations – Updating a File: Random Access – Error handling During File Operations – Command-line Arguments. Chapter 11(Sections 11.1 - 11.10)

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Object Oriented	E.Balagurusamy	Tata McGraw Hill Publishing Company
	Programming with C++		Limited. NewDelhi. Fourth Edition – Tenth

			Reprint 201	0.
Books	Books for Reference:			
S.No	Name of the Book	Aut	nors	Publishers with Edition
1	C++ - How to Program	Deit	el and Deitel	Prentice- Hall, 1998.
2	Object Oriented Program Turbo C++	nming in Rob	ert Lefore	Waite Group Publications – 1999.

M.Sc Mathematics Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core XI - Programming With C++ Practical	Course Code: 17MMCP
Semester: III	No. of Credits: 4
No. of hours :45(Total hours)	P:T:30:15
CIA Max. Marks: 40	ESE Max. Marks:60

(P: Practical,T:Tutorial)

Course Objectives:

The objectives of this course are to

- provide complete knowledge of Object Oriented Programming through C++
- enhance the programming skills of the students by giving practical assignments to be done in labs.
- learn how to write inline functions for performance.
- \blacktriangleright overload functions and operators in C++.

Syllabus:

0 hrs
(

- 1. Sorting of Numbers(without using function)
- 2. Sorting of numbers (using function)
- 3. Numerical Integration by 1/3 rd Simpson's rule.
- 4. Solving First Order Ordinary Differential Equation using
 - (i) Runge- Kutta Second order method.
 - (ii) Runge- Kutta Fourth order method.
- 5. Solving First Order Ordinary Differential Equation using Adam's Predictor –Corrector method.
- 6. Generating Fibonacci series using recursion.
- 7. Finding the Addition, Subtraction, Multiplication and Division of Complex numbers.
- 8. Read the following information from the keyboard:
 - Employee name, Employee code, Designation, Years of experience, Age, Basic pay, Dearness allowance, HRA, deductions and execute the following features:

- (i) Insert a new entry
- (ii) Delete an entry
- (iii) List a table with employee details
- (iv) List a table with salary details
- (v) Sort the entries
- 9. Preparing a Mark Sheet of a University Examination with the following information:
 - a) Name of the Student, Roll Number, Subject Code, Subject Name,
 - b) Internal Marks and External Marks.

The program should carry out the following tasks:

- a) Sort the students list by Name.
- b) Sort the students list by Rank.
- 10. Simulation of a simple Banking System in which initial balance and the rate of interest are read from the keyboard and these values are initialized using the constructor member function.

The program should consist of following methods:

- a. To initialize the balance and rate of interest using the constructor member function.
- b. To make deposit.
- c. To withdraw an amount from the balance.
- d. To find the Compound interest based on the rate of interest.
- e. To know the balance amount
- f. To display the menu options.
- 11. Swapping two variables of various data types, namely integers, floating point numbers and character types using function overloading.
- 12. Performing Simple arithmetic operations of two complex numbers using operator overloading.
- 13. Run Time Polymorphism using Virtual function
- 14. Creating a base class with data members, name, roll number and sex and a derived class with members, height and weight and declaring the derived class as an array of objects and using the member functions to display the contents of the array on the screen.
- 15. Illustration of how class objects can be written to and read from the disk files.

M.Sc Mathematics Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core XII - Mathematical Modelling	Course Code:17MM12
Semester: III	No. of Credits: 4
No. of hours :75 (Total hours)	C:T: S: 52:10:13

CIA Max. Marks: 25

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

The objectives of the course are to

- create awareness about various real life situations that can be modeled through mathematical models
- give a panoramic view of application of mathematics in Mathematical, Physical and Social sciences
- choose the appropriate technique among the available to obtain the desirable solutions.

Syllabus:

Ur	nit I:	13 hrs
	Mathematical Modelling through Ordinary Differential Equations of First	t order:
	Mathematical Modelling through Differential Equations-Linear Growth and decay	Models-
	Non- Linear Growth and decay Models- Compartment Models- Mathematical Mod	lelling in
	Dynamics through Ordinary Differential Equations of First Order.	
	Chapter 2 (Sections 2.1-2.5)	

Unit II

Mathematical Modelling Through Systems of Ordinary Differential Equations of the First Order: Mathematical Modelling in Population Dynamics- Mathematical Modelling of Epidemics Through Systems of Ordinary Differential Equations of First Order -Compartment Models through Systems of Ordinary Differential Equations - Mathematical Modelling in Economics based on Systems of Ordinary Differential Equations of First Order. Chapter 3(Sections 3.1-3.4)

*Unit III

Mathematical Modelling Through Difference Equations: The Need for Mathematical Modelling Through Difference Equations: Some Simple Models-Basic Theory of Linear Difference Equations with Constant Coefficients- Mathematical Modelling Through Difference Equations in Economics and Finance. Chapter5(Sections 5.1-5.3)

Unit IV

Mathematical Modelling Through Partial Differential Equations: Situations giving rise to Partial Differential Equations Models – Mass-Balance Equations:First Method of Getting PDE Models Momentum – Balance Equations:The Second Method of Obtaining Partial Differential Equations Models – Variational Principles:Third Method of Obtaining Partial Differential Equation Models – Model for Traffic on a Highway.

Chapter 6(Sections 6.1-6.4, 6.6)

ESE Max. Marks:75

13 hrs

13 hrs

Unit V

13 hrs

Mathematical Modelling Through Graphs: Situations that can be Modelled Through Graphs – Mathematical Models in Terms of Directed Graphs – Mathematical Models in Terms of Signed Graphs – Mathematical Modelling in Terms of Weighted Digraphs – Mathematical Modelling in Terms of Unoriented Graphs.

Chapter 7 (Sections 7.1-7.5)

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Mathematical Modelling	J.N Kapur	Wiley Eastern Limited, Second Edition, 2015.

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	Mathematics for Economists	B.C. Mehra and	Sultan Chand and Sons,
		G.M.K. Madani	Sixth Edition, 1988.
2	Differential Equations with	George. F. Simmons	McGrawHill,Inc,2 nd
	applications and Historical Notes		Edition1991.
3	Dynamics	M.K.Venkataraman	Agasthiar book deport, 13 th
			edition 2009.

M.Sc Mathematics

Semester III

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Internship/Summer School Courses/ Sports Training	Course Code: 17MMIS
Semester: III	No. of Credits: 2
No. of hours : -	I:T:R : -
CIA Max. Marks: 50	ESE Max. Marks: -

I:Internship Training, T: Tutorial, R:Report)

Course Objectives:

Internship

The students have to select a school and take up teaching practice for a period of 10 days during their holidays to enhance their teaching ability and submit a report.

Summer School Courses

Students can attend Summer school programmes offered by Institutions of National reputation to enrich their knowledge and submit a report.

Sports Training

Students who are selected for District/State/National teams can attend sports camps. The certificate given by the concerned authorities can be treated as equivalent to the internship report.

M.Sc Mathematics Semester IV

[For students admitted from the academic year 2017-2018 onwards]

Course: Project and Viva-Voce	Course Code:17MMPV
Semester: III & IV	No. of Credits: 8
No. of hours :45(Total hours)(III Semester)	C:T:30:15(III Semester)
No. of hours :90(Total hours) (IV Semester)	C:T:60:30(IV Semester)
CIA Max. Marks:100	ESE Max. Marks: 100

(C:Contact hours, T:Tutorial)

An individual project work has to be carried out in an emerging area/research articles from journals and a report must be submitted.

Course Objectives:

The objectives of this course are to

- create awareness of applications of Mathematics in physical, chemical and social sciences.
- > develop, practice, and improve group communication skills
- > apply effective research and organizational skills in preparing information
- > plan and manage time
- ➢ refine understanding through discussion and explanation.
- ➤ tackle more complex problems than they could on their own.
- ➢ pool knowledge and skills.

Internal Assessment components:

Semester	Evaluation	Marks
III	Review of Literature and Analysis	50
IV	Report Submission and Viva-voce	50

Blue Print for End Semester Examination

Semester	Evaluation	Marks
IV	Project Report	50
IV	Viva-voce	50

M.Sc Mathematics Semester IV

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core XIII - Mathematical Methods	Course Code:17MM13
Semester: IV	No. of Credits: 4
No. of hours :90(Total hours)	C:T: S:63:12:15
CIA Max. Marks: 25	ESE Max. Marks:75

(C:Contact hours, T:Tutorial, S:Seminar) Course Objectives:

The objectives of this course are

- to provide easy and effective means for solutions of integral equations arising in various fields of science and engineering.
- to solve differential and integral equations using integral transforms that are not solvable by standard methods
- ➤ to find extrema of functionals defined over a class of functions.

Syllabus:

Unit I: 16 hrs
Introduction: Definition, Regularity conditions, special kinds of Kernels - Eigen values and
Eigen functions – Convolution Integral – The inner or scalar product of two functions.
Integral Equations with Seperable kernels: Reduction to a system of algebraic equations -
Examples. Fredholm alternative - Examples - An approximate method. Method of
successive Approximations: Iterative scheme – Examples – Volterra integral equations –
Examples.
Book 1: Chapter 2 (Sections $2.1 - 2.5$), Chapter 3 (Sections $3.1 - 3.4$)

Unit II

15 hrs

Applications to Ordinary Differential Equations: Initial value problems – Boundary value problems – Examples. Singular Integral Equations: The Abel integral equation – Examples. Integral Transform Methods: Laplace transform – Application to Volterra integral equations with convolution type kernals – Examples. Book 1: Chapter 5 (Sections 5.1 - 5.3), Chapter 8 (Sections 8.1 - 8.2)

Chapter 9 (Sections 9.3-9.5)

*Unit III

15 hrs

Fourier transforms: Fourier transforms – Fourier cosine transforms – Fourier sine transforms-Fourier transform of derivatives. The calculation of the Fourier transforms of some simple functions – The Fourier transforms of rational functions – The convolution integral – Parseval's theorem for cosine and sine transforms. Book 2: Chapter 2 (Sections 2.3-2.10)

Unit IV

16 hrs

Hankel Transforms: Introduction – Elementary Properties of Hankel Transforms- The Hankel Inversion Theorem- Hankel Transforms of Derivatives of Functions- The Hankel Transforms of Some Elementary Functions- The Parseval Relation for Hankel Transforms-Relations Between Fourier and Hankel Transforms. Book 2: Chapter 5 (Sections 5.1-5.7)

Unit V

The Methods of Variations in Problems with Fixed Boundaries: Variations and its Properties-Euler equation – Functionals of the Form $\int_{x_0}^{x_1} F(x, y_1, y_2, \dots, y_n, y'_1, y'_2, \dots, y'_n) dx$ – Functionals dependent on higher – order derivatives – Functionals dependent on the functions of several independent variables – Variational problems in parametric form. Book 3 : Chapter 6 (Sections 1 – 6)

16 hrs

Books for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-II	Linear Integral Equations – Theory	RamP.Kanwal	Academic press, Inc 1971
	and Technique		
III	The Use of Integral Transforms	Ian.N.Sneddon	Tata Mc-Graw Hill Publishing
			Company Ltd.
IV- V	Differential Equations and the	L.Elsgolts	MIR Publishers, second printing –
	Calculus of variations		1973.

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	Integral Equations	L.I.G. Chambers	A Short Course, International
			Text book company Ltd., 1976
2	Calculus of Variations with	A.S Gupta	Prentice Hall of India Private
	Applications		Ltd., New Delhi, 1997.

M.Sc Mathematics

Semester IV

(For the students admitted during the academic year 2017 – 2018 onwards)

Course: Core XIV– Functional Analysis	Course Code:17MM14
Semester: IV	No. of Credits: 4
No. of hours :90(Total hours)	C:T: S: 63:12:15
CIA Max. Marks: 25	ESE Max. Marks:75

(C: Contact hours, T: Tutorial, S: Seminar)

Course Objectives:

The objectives of this course are

- to give a foundation in Banach spaces, operators, finite dimension spectral theory and Banach algebras.
- to apply the knowledge of above concepts in various branches of pure and applied mathematics.
- to enable the students to establish a relationship between isolated mathematical theories pertaining to different branches with the concepts in functional analysis.

Syllabus:

 Unit I:
 16 hrs

 Banach spaces: The definition and some examples- Continuous linear transformations – The Hahn - Banach theorem – The natural imbedding of N in N** - The open mapping theorem. Chapter 9(Sections 46 – 50)

Unit II

Banach spaces: The conjugate of an operator. Hilbert spaces: The definition and some simple properties – Orthogonal complements – Orthonormal sets. Chapter 9(Section 51) Chapter 10(Sections 52 - 54)

*Unit III

15 hrs

Hilbert spaces: The conjugate space H* – The adjoint of an operator – Self - adjoint operators – Normal and Unitary operators – Projections. Chapter 10(Sections 55-59)

Unit IV

Finite- Dimensional Spectral Theory: Matrices – Determinants and the Spectrum of an operator – The Spectral theorem Chapter 11(Sections 60-62)

Unit V

General Preliminaries on Banach algebras: The definition and some examples – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius.

Chapter 12(Sections 64-68)

Book for study:

Unit	Name of the Book	Authors	Publishers with Edition
I-V	Introduction to	G.F.Simmons	TATA McGraw -Hill Education Private Ltd,
	Topology and Modern		Twenty fifth Reprint 2015
	Analysis		

Books for Reference:

S.No.	Name of the Book	Authors	Publishers with Edition
1	Functional Analysis	Dr.D.Somasundaram	S.Viswanathan Pvt Ltd., 1994
2	Functional Analysis	B.V.Limaye	Wiley Eastern Limited, Second edition, 2004.
3	Functional Analysis with applications	A.H.Siddiqui	Tata McGraw Hill Publishing Co. Ltd., 2007.
4	Functional Analysis	M.Thamban Nair	Prentice Hall of India Pvt Ltd., 2002

15 hrs

16 hrs