M.Sc Mathematics

Programme Outcomes

On completion of the Programme the students will

PO1: h	ave in-depth	and advanced	knowledge in both	pure and	applied Mathematics
---------------	--------------	--------------	-------------------	----------	---------------------

PO2: have effective scientific and / or technical communication in both oral and writing

PO3: model and solve scientific and real life problems using the acquired mathematical knowledge

PO4: develop research acumen and pursue career in teaching, Research and development.

PO5: become self-motivated lifelong learners

Programme Specific Outcomes

On completion of the Programme the students will

PSO2: Formulate proofs for theorems on their own.

PSO3: Approach problems in different perspectives and develop innovative method of solving.

PSO4: Use appropriate software tools to solve complicated mathematical problems.

Course Outcomes

Semester	Course	Course Name	Course	e Outcomes
	Code			
I	21MM01	Core I Algebra	CO 1	explain about another counting principle and
				three parts of Sylow's theorem
			CO 2	use the properties on Polynomial rings over the
				rational field and commutative rings
			ÇO 3	explain about extension fields and roots of
				polynomials
			CO 4	describe the elements of Galois theory
			CO 5	classify the properties of modules and finite
				fields
	21MM02	Core II Real	CO 1	represent derivatives in higher dimensional
		Analysis		space and derive their properties

		00.2	:
		CO 2	intrepret the properties of measurable sets and measurable functions
		ÇO 3	study lebesgue integral of bounded functions
		CO 4	relate integrable functions and absolutely
			continuous functions with differentiation of an
			integral and functions of bounded variation
		CO 5	respectively.
		CO 3	derive the results connecting measure spaces, measurable functions and signed measure
21MM03	Core III	CO 1	solve the higher order linear differential
	Ordinary		equations
	Differential	CO 2	evaluate the second order linear equations and
	Equations		apply the Legendre and Bessel's equations to find the solutions in Power series.
		ÇO 3	solve the non-homogeneous linear equations
		300	with constant co-efficients and find the
			solutions
		CO 4	compute solution using Picard's theorem and
			find the existence and uniqueness of solutions
			of system.
		CO 5	solve boundary value problem and
213/13/10/	C. IV	CO 1	applications of boundary value problem
21MM04	Core IV Advanced	CO 1	determine the minimal spanning tree, shortest route and maximal flow in a network.
	Operations	CO 2	compute the optimum solution of a
	Research		multivariable process by decomposing into a
			single variable sub-problems.
		ÇO 3	obtain the optimum inventory policies for
		_	probabilistic inventory models.
		CO 4	determine the measures of performance of
			various queuing systems.
		CO 5	obtain optimum solutions of non linear
21MME1	Floative I	CO 1	programming problems.
21MME1	Elective I Differential	CO 1	determine osculating plane, torsion in space.
	Geometry	CO 2	derive the natural equation of a curve and their
		96.4	properties.
			datamana tundamantal tamaa and
		ÇO 3	determine fundamental forms and
			corresponding developable surfaces.
		CO 4	corresponding developable surfaces. determine the Dupins indicatrix using the
		CO 4	corresponding developable surfaces. determine the Dupins indicatrix using the fundamental forms.
			corresponding developable surfaces. determine the Dupins indicatrix using the fundamental forms. determine the fundamental equation of
21MME2	Elective I	CO 4	corresponding developable surfaces. determine the Dupins indicatrix using the fundamental forms. determine the fundamental equation of surfaces and their properties
21MME2	Elective I Number	CO 4	corresponding developable surfaces. determine the Dupins indicatrix using the fundamental forms. determine the fundamental equation of surfaces and their properties

		Theory	CO 2	identify primes and compute squares modulo
			ÇO 3	classify numbers by Law of Quadratic Reciprocity and identify the primitive roots, quadratic residues, and quadratic non- residues.
			CO 4	evaluate Diaphontine Approximation and Pell's Equation
			CO 5	interpret the concepts of elliptic curves and Continued Fractions.
II	21MM05	Core V Complex Analysis	CO 1	explain the applications of analytic functions in the evaluation complex integrals and in Cauchy's theorem
			CO 2	represent meromorphic functions using partial fractions and factorization
			ÇO 3	describe equicontinuity and normality of families of analytic functions
			CO 4	explain the properties of harmonic and subharmonic functions
			CO 5	describe the properties of elliptic functions
	21MM06	Core VI Partial Differential	CO 1	use partial derivative techniques to predict the behavior of vibrating string, membrane and heat conduction on solids and classify them.
		Equations	CO 2	solve IBVP such as Cauchy's problem, Goursat problem and wave equation by the method of characteristics.
			ÇO 3	solve IBVP using the method of separation of variables.
			CO 4	obtain the solution of the Boundary value problems using Fourier integrals.
			CO 5	obtain the solution of the Boundary value problems in terms of Greens function.
	21MM07	Core VII Special Functions	CO 1	obtain the general solution of Legendre's Equation, describe its properties, derive recurrence, Christoffel's and Rodrigue's formula and solve simple problems
			CO 2	derive the general solution of Hermite Polynomials, discuss its properties, and solve simple problems
			ÇO 3	solve Bessel's Equation, derive generating function, understand its properties obtain recurrence formula and solve simple problems
			CO 4	compute the general solution of Leguerre Polynomials, discuss its properties, and solve simple problems

		CO 5	find the solution of Chebyshev Polynomials, derive generating function, understand its properties and solve simple problems
21MM08	Core VIII Numerical Analysis	CO 1	obtain the approximation of a given function using chebyshev polynomial and its rational form
		CO 2	solve ordinary differential equations
		ÇO 3	solve boundary value problems
		CO 4	solve partial differential equations such as heat equation, wave equation etc.,
		CO 5	use finite element methods to solve boundary value problems.
21MME3	Elective II Control	CO 1	determine the observability of linear and nonlinear systems.
	Theory	CO 2	determine the controllability of linear and nonlinear systems.
		ÇO 3	examine the stability of linear, Perturbed Linear and nonlinear systems.
		CO 4	stabilize a system via Linear Feedback and Restricted Feedback.
		CO 5	characterize and derive optimal control function.
21MME4	Elective II Stochastic	CO 1	explain the stochastic processes, Markov chain and stationary distributions.
	Processes	CO 2	describe the Poisson Process
		ÇO 3	calculate the time distribution of a Markov process.
		CO 4	classify the delayed and equilibrium Renewal Processes
		CO 5	determine the regenerative stochastic process
21MMA1	Advanced Learners Course I LaTeX	СО	Use LaTeX to generate, prepare document report for given application
21MMA2	Advanced	CO 1	define and describe Brownian motion
	Learners Course I Financial	CO 2	describe in detail the interest rates and compute the present value
	Mathematics	ÇO 3	design, build and evaluate pricing contracts using arbitrage and The Multi period Binomial Model
		CO 4	describe The Black – Scholes Option Cost and analyse the strategy of The Delta Hedging

				Arbitrage
			CO 5	illustrate the concept of various types of
				options and estimating the volatility parameter
III	21MM09	Core IX	CO 1	illustrate the concept of topological spaces and
		Topology		continuous functions
			CO 2	determine the connectedness property of
				topological spaces
			ÇO 3	check the compactness and find the limit
			00.4	points of topological spaces
			CO 4	prove theorems based on compactness and
			CO 5	completely regular
			1003	explain the concepts and theorems based on paracompactness
	21MM10	Core X	CO 1	derive the results of energy and momentum
	211111110	Classical		
		Mechanics	CO 2	solve simple physical problems using
			00.0	Lagranges equation and Routhian procedure.
			ÇO 3	use Euler-Lagrange equation, Hamilton's
				equation and principle of least action in solving physical problems.
			CO 4	determine the separability of a system.
				- v v
			CO 5	differentiate different forms of
				transformations and obtain their principal
	21MM11	Core XI	CO 1	forms.
	211/11/111	Programming	COT	know about various data types, operators and expressions
		with C++	CO 2	do with functions, classes and objects
			ÇO 3	use constructors, destructors and operator
			CO 1	overloading
			CO 4	recognize inheritance and pointers
			CO 5	work with files.
	21MM12	Core XII	CO 1	represent linear and nonlinear growth and
		Mathematical		decay models, compartment models and
		Modelling		dynamic models through ordinary differential
			GC 5	equations
			CO 2	derive population dynamics models, epidemic
				models, compartment models and economic models through system of ordinary differential
				equations of first order and solve them.
			ÇO 3	represent and derive the mathematical model of
				planetary motions, circular motions and Motion
				of satellites using ordinary differential equation
				of second order.
			CO 4	determine the mathematical model through

				difference equations and solve them.
			CO 5	derive the appropriate mathematical model
				using graphs.
	21MME5	Elective III Graph Theory	CO 1	recall and derive basic concepts of graph theory and tree related concepts
			CO 2	define different connectivity's of a graph, Eulerian and Hamiltonian graphs and characterize them
			ÇO 3	define the concepts matching and edge colouring in graphs and derive related properties
			CO 4	identify independent sets, Ramsay graphs, critical graphs and determine vertex colouring, chromatic number, chromatic polynomial of graphs.
			CO 5	identify planar graphs and derive their properties
	21MME6	Elective III Coding	CO 1	understand the situations under which probability of incorrect decoding is zero
		Theory	CO 2	determine the minimum distance of a linear code
			ÇO 3	construct Cyclic codes
			CO 4	distinguish between perfect, Nearly perfect and uniformly packed binary codes.
			CO 5	able to generalize BCH codes
	21MMIS	Internship/ Summer	CO 1	use profession specific terminology.
		School/ Sports Training /	CO 2	effectively plan and utilize ICT tools to complete the task.
		Short Term Course	ÇO 3	apply the knowledge acquired in the campus to the given task.
		Course	CO 4	demonstrate problem-solving and critical thinking skills.
			CO 5	exhibit appropriate workplace attitudes
IV	21MM13	Core XIII Mathematical Methods	CO 1	illustrate different types of integral equations, its Kernals and solve Fredholm integral equations
			CO 2	solve Abel integral equations and find the solutions Volterra integral equations
			ÇO 3	find Fourier transform of simple and rational functions
			CO 4	calculate Hankel Transforms of derivatives of functions and elementary functions
			CO 5	solve variational problem by constructing an appropriate functional, and solving the Euler-

			Lagrange equations.
21MM14	Core XIV Functional	CO 1	check for the algebraic and topological aspects of a Banach space
	Analysis	CO 2	describe the behaviour of projection on a Banach space
		ÇO 3	construct orthonormal sets from a orthogonal set and obtain the Fourier expansion of a vector
		CO 4	obtain the matrix representation of an operator given a basis
		CO 5	find the spectral radius of an element in a Banach Algebra
21MM15	Core XV Fluid Dynamics	CO 1	derive the equations of motion
	Dynamics	CO 2	know the concepts of vorticity
		ÇO 3	determine the flow of an incompressible fluid in two dimensions
		CO 4	determine the flow of a viscous fluid under different conditions
		CO 5	derive boundary layer equations in incompressible flow
21MME7	Elective IV Statistical Methods	CO 1	apply appropriate tests to test the significance of large samples by stating null and alternative hypothesis
	Wethous	CO 2	test the significance of single proportion and difference of proportions
		ÇO 3	test the significance of mean, variance and standard deviation
		CO 4	apply Chi-square and Bartlett's test of homogeneity
		CO 5	apply t-test, paired t-test and F-test appropriately
21MME8	Elective IV Transforms	CO 1	represent signals using Fourier Series and its properties
	and Signals	CO 2	find different spectras of signals using Fourier Transforms and its properties
		ÇO 3	compute transform function and system impulse response for the LTI system
		CO 4	determine the Fourier representation of periodic sequences
		CO 5	obtain ROC of discrete-time exponential sequences using z-transform
21MMPV	Project and Viva-Voce	CO 1	enhance their knowledge in the latest advancements in their area of interest.
	v 1 v a - v UCC	CO 2	understand the methodology of writing

г	1		~~ ~	
			ÇO 3	pool their expertise, knowledge and skills and complete the tasks.
			CO 4	effectively manage time, execute the plan and integrate various activities
			CO 5	break down a complex problem into simple components and determine solutions for the same.
	21MMA3	Advanced	CO 1	explain the basic syntax in MATLAB
		Learners Course II Computational Mathematics	CO 2	use basic structures to develop code in MATLA to handle arrays and perform mathematical operations
		Laboratory	ÇO 3	Perform vector operations and find the value of multiple integrals
			CO 4	apply the working knowledge of MATLAB to solve ODE's and LPP's.
			CO 5	interpret and visualize the solution of mathematical problems
	21MMA4	Advanced Learner's	CO 1	determine the rate of growth or decay of insect population, fisheries
		Course II Mathematical	CO 2	model prey – predator equations and ecosystems
		Biology	ÇO 3	find the prevalence of an infection, number of individuals affected and the effect of population age structure
			CO 4	study the effectiveness sexual reproduction and genetic dominance using difference equations under various situations
			CO 5	model random motion from polynomial sciences that are adopted in biological situations