Department of Mathematics

Programme Educational Objectives

Within few years of graduation we expect the graduates to attain the following

PEO 1: Possess logical, analytical and problem solving skills.

PEO 2: Confidence to Comprehend and construct mathematical proofs independently using the learning opportunities.

PEO 3: Ability to explore the nuances of mathematical techniques and apply them to various domains.

PEO4: Be either readily employable, engage in higher learning or Indulge in research and become responsible citizens

PEO 5:Practice ethics in their profession and pass it on to generations

Programme Outcome On completion of the Programme the students will

PO1: acquire adequate knowledge	in the principles	underlying	standard applications of
mathematics.			

PO2: possess the ability to analyse and synthesize mathematics /mathematics oriented problems and use appropriate mathematical techniques, skills and modern computing tools necessary for problem solving.

PO3: be able to comprehend and analyse real world problems and also develop creativity through practical components of the curriculum.

PO4: be capable of proposing new ideas and solutions, plan and organize various tasks through the co-curricular, extra-curricular and interdisciplinary activities and are able to communicate effectively.

PO5: engage in independent and lifelong learning to become freelance mathematics tutors and are able to communicate effectively or professionals and commit to social and professional ethics.

Course Outcomes(Cos)

Name of the Course	Course Outcomes			
Core V Vector	CO1: know about the concepts of Gradient, Divergence and Curl.			
Calculus and Fourier	CO2: relate the identities involving the operators.			
Series	CO3: evaluate Line integrals and surface integrals using Gauss			
	divergence theorem.			
	CO4: evaluate surface and volume integrals using Stoke's and			
	Green's theorem.			
	CO5: obtain Fourier series for various functions.			
	CO6: convert any mathematical function to trigonometric function			
Core VI Statics	CO1: find the resultant of two or more forces acting on a particle			
	CO2: understand the concepts of equilibrium of a particle under three			
	or more forces.			
	CO3: compute the moment of a force and a couple.			
	CO4: obtain the equation of the line of action of the resultant.			
	CO5: comprehend the effect of friction on planar motion.			
	CO6: identify the centre of mass for different geometrical figures			
Part III Allied III	CO1: calculate the expected values and probabilities associated with			
Mathematical	the distributions of random variables			
Statistics I	CO2: evaluate expectation and variance			
	CO3: identify the relationship between attributes			
	CO4: describe the theoretical distributions			
	CO5: apply the special continuous probability distributions in real			
	world problems			
Non-Major Elective	CO1: simplify fractions easily.			
Basic Mathematics for	CO2: acquire enough knowledge to solve problems on ages and profit			
Competitive	and loss.			
Examinations	CO3: solve problems in ratio and proportion and partnership.			
	CO4: gain knowledge in solving problems involving time and other			
	factors.			
	CO5: calculate simple interest, compound interest and true discount.			
	CO6: improve their numerical aptitude			
Part IV - Skill	CO1: use the mathematical term at the appropriate place			
Enhancement Course I	CO2: face interviews/present papers with more confidence			
Professional English for	CO3: write research articles			
Mathematics	CO4: create mathematical content for social media			
	CO5: create blogspots on important mathematical topics			
Core VII Discrete	CO1: know various connectives in logic.			
Mathematics	CO2: construct truth table for statement formulae			
	CO3: convert the statement formulae to its equivalent forms.			
	CO4: characterize posets, semigroups and monoids.			
	CO5: examine the concepts of lattices and Boolean algebra.			
	CO6: minimize Boolean functions			
Core VIII Dynamics	CO1: interpret and illustrate the basic concepts in Kinematics			
	CO2: gain knowledge about simple harmonic motion and its			

	application in Physical situation			
	CO3: recall various properties of a projectile			
	CO4: describe and evaluate direct and oblique impact of bodies.			
	CO5: describe the properties of the central orbits.			
	CO6: analyze the effects of forces on material bodies			
Allied IV Mathematical	CO1: apply and compute maximum likelihood estimation			
Statistics-II	CO2: Explain all aspects of parametric testing techniques including			
	single and multi-sample tests for mean and proportion			
	CO3: Determine sampling of attributes			
	CO4: describe Normal uniform Gamma beta t F and chi-square			
	distributions			
	CO5: apply the special continuous probability distributions in real			
	world problems			
Skill Enhancement	CO1: find the degree sequence, connectivity and isomorphism of			
Course II Granh	graphs			
Theory	CO2: identify various types of graphs			
licory	CO3: identify and differentiate Hamiltonian and Eulerian graphs			
	CO4: explain various properties of digraphs			
	CO5: write adjacency and incidence matrix of a given labeled			
	graph or digraph and vice versa			
Advanced Learners	CO1: understand the Principle of Inclusion-Exclusion			
Course I Combinatorics	CO2: analyze the concepts of Pigeophole Principle and its applications			
	CO3: compute the generating function of a sequence			
	CO4: describe the method of Generating Functions			
	CO5: relate functions of a real variable with sequences of numbers			
	CO6: solve recurrence relations			
Advanced Learners	CO1: design use and interpret control charts for variables			
Course I Statistical	CO2: tabulate the appropriate Acceptance Sampling Plan			
	CO3: estimate the non-conformance rate and improve the process			
Quality Control	quality			
	CO4 characterize various types of scientific sampling			
	CO5: estimate the sampling inspection in an efficient manner			
	CO6: enumerate the methods of statistical process control			
Core IX Real Analysis I	CO1: apply the properties of real numbers			
Core IX Real Analysis I	CO2: acquire the knowledge of sets relations and functions			
	CO3: classify the countable uncountable open closed and compact			
	cots			
	CO4 : interpret the properties of sets in Metric spaces			
	CO5: analyse the nature of sets under limits and continuity			
	CO6: identify the relation between completeness and compactness of			
	sets in metric space			
Core X Complex	CO1: specify the geometric properties of the complex number system			
Analysis I	CO2: analyze differentiability of complex functions in various domains			
	CO3 : identify analytic and harmonic functions			
	CO4 : derive and apply bilinear transformations and cross ratio			
	CO5: avamine the convergence of power series			
	COS. examine the convergence of power series			

	CO6: express exponential, trigonometric, hyperbolic and logarithmic
	functions in terms of power series
	CO7: describe the transformation of various curves and regions in the
	complex plane under elementary analytic functions.
Core XI Abstract	CO1: acquire knowledge about mapping and Euclidean algorithm.
Algebra	CO2: acquire knowledge about the concept of rings and their basic
	properties.
	CO3: classify the properties of different algebraic structures.
	CO4: characterize the mappings between algebraic structures.
	CO5: discuss the structure preserving mappings like homomorphism,
	isomorphism etc.
	CO6: solve the problems related to algebraic structures.
Core XII Group	CO1: collaborate and cooperate among themselves to execute the task.
Project	CO2: develop communication and teamwork skills.
	CO3: pool their expertise, knowledge and skills and complete the tasks.
	CO4: effectively manage time, execute the plan and integrate various
	activities.
	CO5: break down a complex problem into simple components and
	determine solutions for the same.
	CO6: prepare and present the report of the project in an organized
	manner.
Elective I Number	CO1: know about the basic concepts of numbers.
Theory	CO2: understand the origin of the operations of integers and algorithms
	relevant to it.
	CO3: identify all prime numbers in a given range using the sieve of
	Eratosthenes.
	CO4: solve congruences
	CO5: test primitive roots.
	CO6: apply number theory in cryptography.
Skill Enhancement	CO1: describe the basic features of the SCILAB software.
Course III SCILAB	CO2: use basic structures to develop code in SCILAB to handle
	arrays and perform mathematical operations
	CO3: demonstrate appropriate use of graphical functions
	CO4: apply the concept of structures and functions in establishing
	databases/ simple banking operations
	CO5: interpret and visualize application of mathematical concepts in
	application processing and numeric manipulations
	CO6: apply the working knowledge of SCILAB package to solve
	ODE's and LPP's
Core XIII Real Analysis	CO1: explain and illustrate the connectedness of metric spaces and its
II	relation to continuity of functions
	CO2: describe the concept of uniform continuity and compact sets
	CO3: gain a complete knowledge of derivatives and apply them
	appropriately

	CO4: analyze various properties of monotonic functions and functions			
	of bounded variation			
	CO5: recognize the impact of monotonicity and bounded variation in			
	Riemann- Stieltjes Integral			
	CO6: relate upper and lower integrals with Riemann- Stieltjes Integral			
Core XIV Complex	CO1: understand the basic idea of complex integration			
Analysis II	CO2: derive and apply various Cauchy's integral formulae			
	CO3: express a given function as a power series in the defined region.			
	CO4: identify and classify the singular points and the behaviour of a			
	function in the neighbourhood of a singular point			
	CO5: acquire knowledge about the residue of a function and various			
	methods to find the same.			
	CO6: derive and apply Cauchy residue theorem to evaluate certain types			
	of real definite integrals			
Core XV Linear	CO1: find basis, linear independence and dimension in a vector space.			
Algebra	CO2: relate the concept of dual space and the notion of an inner			
	product space			
	CO3: identify the algebra of linear transformations and the matrix of a			
	linear transformation			
	CO4: acquire knowledge about the types of linear transformations and			
	their properties			
	CO5: discuss about the types of matrices			
	CO6: apply the concept of characteristic roots and characteristic vectors			
	of a square matrix.			
Elective II Operations	CO1: recall the basic concepts of Linear Programming Problems and			
Research	solve them			
	CO2: explain the concept of Duality and its applications			
	CO3: minimize the cost in transportation problems and assignment			
	problems			
	CO4: determine the appropriate order for a series of jobs to be done on			
	a finite number of service facilities			
	CO5: apply the optimization techniques in inventory control.			
	CO6: demonstrate the applications of various optimization tools to the			
	real life problems involving networks.			
Elective III - Fuzzy and	CO1: compare fuzzy sets with crisp sets.			
Intuitionistic	CO2: acquire knowledge about the fuzzy logic and defuzzification			
Fuzzy Sets	methods and apply them			
	CO3: acquire knowledge about Genetic Algorithms			
	CO4: express the given system using associative memories.			
	CO5: explain the concepts of Intuitionistic fuzzy sets and its basic			
	properties.			
	CO6: apply the methods of fuzzy sets and fuzzy logic in fuzzy control			
	systems.			
Skill Enhancement	CO1: learn to use profession specific terminology.			
Course IV Internship /	CO2: effectively plan and utilize ICT tools to complete the task			
Summer Training	CO3: apply the knowledge acquired in the campus to the task.			

	CO4: demonstrate problem-solving and critical thinking skills.				
	CO5: exhibit appropriate workplace attitudes				
	CO6: manage and review their personal behavior and attitudes				
Advanced Learners	CO1: calculate annuity, present value of annuities, perpetuities and				
Course I Statistical	redemption of loans				
Quality Control	CO2: acquire knowledge about mortality tables and life assurance				
Quanty Control	premiums				
	CO3: analyze about assurance benefit, life annuities and temporary				
	annuities				
	CO4: analyze the difference between net premiums for assurance plans				
	and annuity plans				
	CO5: relate policy values and premium conversion tables				
	CO6: calculate life assurance premiums and assurance benefits				
Advanced Learners	CO1: acquire knowledge about the concepts of bases, orthonormality,				
Course II	orthogonality and complex Fourier series				
Introduction To	CO2: distinguish the wavelet transform, Fourier transform in				
Wavelet Theory	continuous and discrete cases				
	CO3: apply Fourier transform to signals and describe the properties of				
	wavelets used in continuous wavelet transform				
	CO4: differentiate continuous wavelet transform and discrete wavelet				
	transform in continuous and discrete cases				
	CO5: classify the normalization of Haar bases at different scales				
	CO6: analyse various conditions in restrictions on filter coefficients				
Allied III Mathematics I	CO1: find the sum of binomial, exponential and logarithmic series				
(For Physics and	CO2: find the sum of binomial, exponential and logarithmic series				
Chemistry)	CO3: gain knowledge of real life applications of matrices.				
	CO4: understand how interpolation technique is applied in real life				
	CO5: know about the properties of trigonometric functions and their				
	applications				
	CO6: explain the fundamentals of the mathematics and apply while				
	creating innovations				
Alled IV Mathematics II	CO2: find autorations of autors and distinguish the significance of				
(FOF Physics and Chamistary)	CO2: This curvature of curves and distinguish the significance of				
Chemistry)	CO3: find the solution of higher order differential equations				
	CO4: know about various matheds of solving Dartial differential				
	equations				
	CO5: acquire knowledge about the Laplace transforms and its inverse				
	CO6: obtain the Fourier series for various function				
Allied III _	CO1: calculate simple compound interest rate of interest etc.				
Mathematics	CO2: perform various operations on matrices				
(For B Com	CO3 : describe the concepts in Linear Programming Problem				
\mathbf{B} Com(CA)	CO4 · solve the linear programming problem using simplex method				
B Com(e com))	CO5: minimize the cost in transportation and assignment problems				
	CO6: interpret the concept of game theory				
1	1 cov morphet the concept of funde theory.				

Programme Outcomes

On completion of the programme the students will

PO1: possess the to analyse and synthesize the concepts in mathematics and related subjects
and to use appropriate mathematical techniques, skills and modern computing tools
necessary for problem solving.
PO2: comprehend and analyse real world problems and also develop creativity through
practical components of the curriculum.
PO3: engage in independent learning to become freelance mathematics tutors, professionals
or researchers.
PO4: expose and develop technical, analytical and creative skills.
PO5: promote and uphold Self-Discipline, Leadership Qualities, Secular Outlook, National
Integration and Civic Responsibility.
PO6: augment the Acquisition of Micro and Macro Skills of Tamil, Malayalam, Hindi and
French Language Usages.
PO7: enhance Communicative Linguistic Competency and Employability Quotient.
PO8: exhibit consistent academic excellence and integrated personality towards lifelong
learning.

Programme Specific Outcomes

On completion of the programme the students will

PSO1: acquire adequate knowledge in the basic principles of Mathematics and allied subjects.

PSO2: have a sound mathematical foundation that improves analytical and logical skills.

PSO3: be able to solve real life problems depicted in Mathematical form.

Semester	Course	Course Name	Course Outcomes	
	Code			
Ι	121M01	Part III Core	CO1	test the convergency and divergency of an
		I Algebra and		infinite series.
		Calculus	CO2	apply binomial, exponential and logarithmic
				series to determine the sum of an infinite series.
			CO3	transform and solve algebraic equations.
			CO4	determine the curvature of curves in different
				co-ordinate systems.
			CO5	contextually acquire skill in comprehending and
				applying the properties of Beta and Gamma
				functions.
	121M02	Part III Core	CO1	solve first order and higher degree differential
		II Differential		equations
		Equations and	CO2	solve the linear differential equations with
		Laplace		constant and variable coefficients.
		Transforms	CO3	solve simultaneous differential equations.

Course Outcomes

			CO4	formulate partial differential equations and
				solve first order partial differential equations.
			CO5	solve differential equations using Laplace
				Transforms
II	221M03	Part III Core	CO1	apply the concepts of direction ratios and
		III Analytical		direction cosines in planes and straight lines
		Geometry of	CO2	use the concepts of straight lines through planes.
		Three	CO3	discuss the various aspects of sphere and
		Dimensions		sections of a sphere.
			CO4	identify various types of cone and obtain their
				equations.
			CO5	use various types of coincides and solve simple
				geometrical problems
	221M04	Part III Core	CO1	solve the Linear Programming Problem using
		IV-		graphical, simplex and duality methods
		Operations	CO2	minimize the cost in transportation problems and
		Research with		assignment problems
		TORA	CO3	interpret the concept of game theory
			CO4	apply the optimization techniques in inventory
				control
			CO5	demonstrate the applications of various
				optimization tools to the real life problems
				involving networks.

Sem	Course Code	Course Name	Course Outcomes	
Ι	121AS1/	Part III - Allied I	CO1	solve a system of linear equations by direct
	121AK1/	Basic		and iterative methods
	121AF1	Mathematics and	CO2	estimate a data using interpolation methods
		Statistics		and determine the
				derivatives of functions using various
				interpolation methods.
			CO3	evaluate integrals using various numerical
				techniques
			CO4	apply correlation concepts to determine the
				correlation coefficients.
			CO5	derive regression equations and also recall
				the basic properties of Normal distributions
	121AW1	Part III - Allied I	CO1	know the basic concepts of convergency and
		Mathematics for		divergency of series.
		Statistics I	CO2	compute the summation of binomial,
				exponential and logarithmic series.
			CO3	determine the roots of a algebraic equations
			CO4	perform Mathematical operations of
				complex numbers in
				trigonometric form
			CO5	solve simple trigonometric function using
				expansion
II	221AS2	Part III	CO1	construct truth table and normal forms for

/221AK2/	Allied II Discrete		statement formulae
221AG2/	Mathematics		using connectives in logic
221AF2		CO2	distinguish between relations and functions
			and describe various associated properties
		CO3	simplify Boolean expressions and
			manipulate lattices in
			appropriate context.
		CO4	recall various properties of graphs and to
			prove results related to path, cycles,
			connectivity and matrix representations.
		CO5	distinguish the types of phrase structure
			grammar and
			manipulate various states involved in finite
			state automata
221AW2	Part III Allied II	CO1	compute the derivatives of functions.
	Mathematics for	CO2	compute successive derivatives
	Statistics II	CO3	evaluate integrals using various methods
		CO4	know about Laplace transform of various
			functions.
		CO5	obtain Fourier series of various functions.